Solveeit Logo

Question

Question: The number of triplets $(x, y, z)$ where $x, y, z \in [0, \pi]$ satisfying the inequality $(4 + \sin...

The number of triplets (x,y,z)(x, y, z) where x,y,z[0,π]x, y, z \in [0, \pi] satisfying the inequality (4+sin4x)(2+cot2y)(1+sin4z)12sin2z(4 + \sin 4x)(2 + \cot^2 y)(1 + \sin^4 z) \leq 12 \sin^2 z is

A

1

B

2

C

3

D

4

E

5

F

6

G

7

H

8

I

9

J

0

Answer

2

Explanation

Solution

The inequality is (4+sin4x)(2+cot2y)(1+sin4z)12sin2z(4 + \sin 4x)(2 + \cot^2 y)(1 + \sin^4 z) \leq 12 \sin^2 z. Let x,y,z[0,π]x, y, z \in [0, \pi].

The terms have the following ranges:

  • 4+sin4x[3,5]4 + \sin 4x \in [3, 5]
  • 2+cot2y22 + \cot^2 y \geq 2 (for y(0,π)y \in (0, \pi))
  • 1+sin4z[1,2]1 + \sin^4 z \in [1, 2]
  • 12sin2z[0,12]12 \sin^2 z \in [0, 12]

The inequality can be written as: (4+sin4x)(2+cot2y)12sin2z1+sin4z(4 + \sin 4x)(2 + \cot^2 y) \leq \frac{12 \sin^2 z}{1 + \sin^4 z}.

The left side (LHS) has a minimum value of 3×2=63 \times 2 = 6. Let u=sin2zu = \sin^2 z. For z(0,π)z \in (0, \pi), u(0,1]u \in (0, 1]. The right side (RHS) becomes f(u)=12u1+u2f(u) = \frac{12u}{1+u^2}. The maximum of f(u)f(u) for u(0,1]u \in (0, 1] occurs at u=1u=1, giving f(1)=12(1)1+12=6f(1) = \frac{12(1)}{1+1^2} = 6. So, RHS 6\leq 6.

For the inequality LHS \leq RHS to hold, we must have LHS = 6 and RHS = 6.

LHS = 6 implies:

  • 4+sin4x=3    sin4x=14 + \sin 4x = 3 \implies \sin 4x = -1. For x[0,π]x \in [0, \pi], 4x[0,4π]4x \in [0, 4\pi]. Solutions for 4x4x are 3π2,7π2\frac{3\pi}{2}, \frac{7\pi}{2}. Thus, x=3π8,7π8x = \frac{3\pi}{8}, \frac{7\pi}{8} (2 values).
  • 2+cot2y=2    cot2y=0    coty=02 + \cot^2 y = 2 \implies \cot^2 y = 0 \implies \cot y = 0. For y[0,π]y \in [0, \pi], y=π2y = \frac{\pi}{2} (1 value).

RHS = 6 implies:

  • 12sin2z1+sin4z=6    sin2z=1\frac{12 \sin^2 z}{1 + \sin^4 z} = 6 \implies \sin^2 z = 1. For z[0,π]z \in [0, \pi], sinz=1\sin z = 1, so z=π2z = \frac{\pi}{2} (1 value).

The total number of triplets is the product of the number of solutions for each variable: 2×1×1=22 \times 1 \times 1 = 2.