Solveeit Logo

Question

Question: Let $f_k(x) = \sum_{n=1}^{k} \frac{\cos((3n+1)x) - \cos((3n+2)x)}{1+2\cos((2n+1)x)}$, then $(2f_{10}...

Let fk(x)=n=1kcos((3n+1)x)cos((3n+2)x)1+2cos((2n+1)x)f_k(x) = \sum_{n=1}^{k} \frac{\cos((3n+1)x) - \cos((3n+2)x)}{1+2\cos((2n+1)x)}, then (2f10(π3)+5)=(2f_{10}(\frac{\pi}{3})+5) = .

A

5

B

10

C

0

D

1

Answer

5

Explanation

Solution

The general term of the sum simplifies to Tn(x)=2sin(x2)sin((2n+1)x2)T_n(x) = 2 \sin(\frac{x}{2}) \sin(\frac{(2n+1)x}{2}) using trigonometric identities. Evaluating at x=π3x=\frac{\pi}{3}, we get Tn(π3)=sin((2n+1)π6)T_n(\frac{\pi}{3}) = \sin(\frac{(2n+1)\pi}{6}). The sequence of these terms for n=1,2,n=1, 2, \dots is 1,12,12,1,12,121, \frac{1}{2}, -\frac{1}{2}, -1, -\frac{1}{2}, \frac{1}{2}, which has a sum of 0 over every 6 terms. For k=10k=10, f10(π3)f_{10}(\frac{\pi}{3}) is the sum of the first 10 terms. The sum of the first 6 terms is 0. The remaining terms are T7,T8,T9,T10T_7, T_8, T_9, T_{10}, which are equal to T1,T2,T3,T4T_1, T_2, T_3, T_4 respectively. So, f10(π3)=0+1+12121=0f_{10}(\frac{\pi}{3}) = 0 + 1 + \frac{1}{2} - \frac{1}{2} - 1 = 0. Therefore, 2f10(π3)+5=2(0)+5=52f_{10}(\frac{\pi}{3})+5 = 2(0)+5 = 5.