Solveeit Logo

Question

Question: If rod has linear mass density $\lambda = \frac{m}{l}(1+\frac{x}{l})$, where x is the distance from ...

If rod has linear mass density λ=ml(1+xl)\lambda = \frac{m}{l}(1+\frac{x}{l}), where x is the distance from point mass m. VaV_a and VbV_b are variable velocity. Find velocity of centre of mass.

Answer

1027Va+1727Vb\frac{10}{27} V_a + \frac{17}{27} V_b

Explanation

Solution

The problem asks for the velocity of the center of mass of a system consisting of two point masses and a connecting rod with a variable linear mass density.

1. Calculate the mass of the rod (MrodM_{rod}): The linear mass density is given by λ(x)=mL(1+xL)\lambda(x) = \frac{m}{L}\left(1 + \frac{x}{L}\right), where xx is the distance from the point mass mm (let's call it point A) and LL is the length of the rod. The mass of an infinitesimal element dxdx of the rod is dm=λ(x)dxdm = \lambda(x) dx. To find the total mass of the rod, we integrate λ(x)\lambda(x) from x=0x=0 to x=Lx=L: Mrod=0Lλ(x)dx=0LmL(1+xL)dxM_{rod} = \int_{0}^{L} \lambda(x) dx = \int_{0}^{L} \frac{m}{L}\left(1 + \frac{x}{L}\right) dx Mrod=mL[x+x22L]0LM_{rod} = \frac{m}{L} \left[ x + \frac{x^2}{2L} \right]_{0}^{L} Mrod=mL(L+L22L)=mL(L+L2)=mL(3L2)M_{rod} = \frac{m}{L} \left( L + \frac{L^2}{2L} \right) = \frac{m}{L} \left( L + \frac{L}{2} \right) = \frac{m}{L} \left( \frac{3L}{2} \right) Mrod=3m2M_{rod} = \frac{3m}{2}

2. Calculate the total mass of the system (MtotalM_{total}): The system consists of point mass A (mA=mm_A = m), point mass B (mB=2mm_B = 2m), and the rod (Mrod=3m2M_{rod} = \frac{3m}{2}). Mtotal=mA+mB+Mrod=m+2m+3m2=3m+3m2=6m+3m2=9m2M_{total} = m_A + m_B + M_{rod} = m + 2m + \frac{3m}{2} = 3m + \frac{3m}{2} = \frac{6m + 3m}{2} = \frac{9m}{2}

3. Determine the velocity profile of the rod: Assuming the rod is rigid, the velocity of any point on the rod at a distance xx from mass mm can be expressed as a linear interpolation of the velocities of its ends. Let VA\vec{V}_A be the velocity of mass mm and VB\vec{V}_B be the velocity of mass 2m2m. The velocity of an infinitesimal element dmdm at position xx is: v(x)=(1xL)VA+xLVB\vec{v}(x) = \left(1 - \frac{x}{L}\right)\vec{V}_A + \frac{x}{L}\vec{V}_B

4. Calculate the total momentum of the rod: The momentum of the rod is v(x)dm=0L[(1xL)VA+xLVB]λ(x)dx\int \vec{v}(x) dm = \int_{0}^{L} \left[ \left(1 - \frac{x}{L}\right)\vec{V}_A + \frac{x}{L}\vec{V}_B \right] \lambda(x) dx Substitute λ(x)=mL(1+xL)\lambda(x) = \frac{m}{L}\left(1 + \frac{x}{L}\right): 0L[(1xL)VA+xLVB]mL(1+xL)dx\int_{0}^{L} \left[ \left(1 - \frac{x}{L}\right)\vec{V}_A + \frac{x}{L}\vec{V}_B \right] \frac{m}{L}\left(1 + \frac{x}{L}\right) dx =mL0L[(1x2L2)VA+(xL+x2L2)VB]dx= \frac{m}{L} \int_{0}^{L} \left[ \left(1 - \frac{x^2}{L^2}\right)\vec{V}_A + \left(\frac{x}{L} + \frac{x^2}{L^2}\right)\vec{V}_B \right] dx =mLVA0L(1x2L2)dx+mLVB0L(xL+x2L2)dx= \frac{m}{L} \vec{V}_A \int_{0}^{L} \left(1 - \frac{x^2}{L^2}\right) dx + \frac{m}{L} \vec{V}_B \int_{0}^{L} \left(\frac{x}{L} + \frac{x^2}{L^2}\right) dx

Evaluate the integrals: 0L(1x2L2)dx=[xx33L2]0L=LL33L2=LL3=2L3\int_{0}^{L} \left(1 - \frac{x^2}{L^2}\right) dx = \left[ x - \frac{x^3}{3L^2} \right]_{0}^{L} = L - \frac{L^3}{3L^2} = L - \frac{L}{3} = \frac{2L}{3} 0L(xL+x2L2)dx=[x22L+x33L2]0L=L22L+L33L2=L2+L3=3L+2L6=5L6\int_{0}^{L} \left(\frac{x}{L} + \frac{x^2}{L^2}\right) dx = \left[ \frac{x^2}{2L} + \frac{x^3}{3L^2} \right]_{0}^{L} = \frac{L^2}{2L} + \frac{L^3}{3L^2} = \frac{L}{2} + \frac{L}{3} = \frac{3L + 2L}{6} = \frac{5L}{6}

So, the total momentum of the rod is: mLVA(2L3)+mLVB(5L6)=2m3VA+5m6VB\frac{m}{L} \vec{V}_A \left( \frac{2L}{3} \right) + \frac{m}{L} \vec{V}_B \left( \frac{5L}{6} \right) = \frac{2m}{3} \vec{V}_A + \frac{5m}{6} \vec{V}_B

5. Calculate the velocity of the center of mass (VCMV_{CM}): The velocity of the center of mass for a system is given by: VCM=miVi+vdmdmMtotal\vec{V}_{CM} = \frac{\sum m_i \vec{V}_i + \int \vec{v}_{dm} dm}{M_{total}} VCM=mAVA+mBVB+(2m3VA+5m6VB)Mtotal\vec{V}_{CM} = \frac{m_A \vec{V}_A + m_B \vec{V}_B + \left( \frac{2m}{3} \vec{V}_A + \frac{5m}{6} \vec{V}_B \right)}{M_{total}} VCM=mVA+2mVB+2m3VA+5m6VB9m2\vec{V}_{CM} = \frac{m \vec{V}_A + 2m \vec{V}_B + \frac{2m}{3} \vec{V}_A + \frac{5m}{6} \vec{V}_B}{\frac{9m}{2}}

Combine the terms for VA\vec{V}_A and VB\vec{V}_B: Coefficient of VA\vec{V}_A: m+2m3=3m+2m3=5m3m + \frac{2m}{3} = \frac{3m + 2m}{3} = \frac{5m}{3} Coefficient of VB\vec{V}_B: 2m+5m6=12m+5m6=17m62m + \frac{5m}{6} = \frac{12m + 5m}{6} = \frac{17m}{6}

So, the numerator is: 5m3VA+17m6VB\frac{5m}{3} \vec{V}_A + \frac{17m}{6} \vec{V}_B

Now, substitute this into the VCMV_{CM} formula: VCM=5m3VA+17m6VB9m2\vec{V}_{CM} = \frac{\frac{5m}{3} \vec{V}_A + \frac{17m}{6} \vec{V}_B}{\frac{9m}{2}} VCM=m(53VA+176VB)m(92)\vec{V}_{CM} = \frac{m \left( \frac{5}{3} \vec{V}_A + \frac{17}{6} \vec{V}_B \right)}{m \left( \frac{9}{2} \right)} VCM=29(53VA+176VB)\vec{V}_{CM} = \frac{2}{9} \left( \frac{5}{3} \vec{V}_A + \frac{17}{6} \vec{V}_B \right) VCM=(29×53)VA+(29×176)VB\vec{V}_{CM} = \left( \frac{2}{9} \times \frac{5}{3} \right) \vec{V}_A + \left( \frac{2}{9} \times \frac{17}{6} \right) \vec{V}_B VCM=1027VA+1727VB\vec{V}_{CM} = \frac{10}{27} \vec{V}_A + \frac{17}{27} \vec{V}_B

The final answer is 1027Va+1727Vb\frac{10}{27} V_a + \frac{17}{27} V_b.

Explanation of the solution:

  1. Calculate Rod Mass: Integrate the given linear mass density λ(x)\lambda(x) over the length of the rod to find its total mass MrodM_{rod}.
  2. Calculate Total System Mass: Sum the masses of the two point masses and the calculated mass of the rod to get MtotalM_{total}.
  3. Determine Rod Velocity Profile: Assume the rod is rigid. The velocity of any point on a rigid rod connecting two points A and B, moving with velocities VA\vec{V}_A and VB\vec{V}_B respectively, is given by linear interpolation: v(x)=(1x/L)VA+(x/L)VB\vec{v}(x) = (1 - x/L)\vec{V}_A + (x/L)\vec{V}_B.
  4. Calculate Rod's Momentum Contribution: Integrate the product of the velocity profile v(x)\vec{v}(x) and the differential mass dm=λ(x)dxdm = \lambda(x)dx over the rod's length. This yields the total momentum of the rod.
  5. Apply Center of Mass Velocity Formula: Use the general formula for the velocity of the center of mass of a system: VCM=miViMtotal\vec{V}_{CM} = \frac{\sum m_i \vec{V}_i}{M_{total}}. Sum the individual momenta of the point masses (mAVAm_A \vec{V}_A and mBVBm_B \vec{V}_B) and the calculated total momentum of the rod, then divide by the total mass of the system.