Solveeit Logo

Question

Question: Figure here shows \(P\) and \(Q\) as two equally coherent sources emitting radiations of wavelength ...

Figure here shows PP and QQ as two equally coherent sources emitting radiations of wavelength 20 m20{\text{ }}m. The separation PQPQ is 5 m5{\text{ }}m and the phase of PP is ahead of the phase of QQ by 90o{90^o}. AA, BB and CC are three distant points of observation equidistant from the midpoint of PQPQ. The intensity of radiations at AA, BB and CC will bear the ratio

A. 0 : 1 : 40{\text{ }}:{\text{ }}1{\text{ }}:{\text{ }}4\:
B. 4 : 1 : 04{\text{ }}:{\text{ }}1{\text{ }}:{\text{ }}0\:
C. 0 : 1 : 20{\text{ }}:{\text{ }}1{\text{ }}:{\text{ }}2\:
D. 2 : 1 : 02{\text{ }}:{\text{ }}1{\text{ }}:{\text{ }}0\:

Explanation

Solution

We will calculate the phase differences of each case from their path differences. Then, we will evaluate their net intensities. Finally, we will evaluate the ratio they bear.Two sources are said to be coherent when the waves emitted from them have the same frequency and constant phase difference.

Formulae Used:
Δϕ = 2πλ Δx\Delta \phi {\text{ }} = {\text{ }}\dfrac{{2\pi }}{\lambda }{\text{ }}\Delta x
INet = I1 + I2 + 2I1I2 cosθ{I_{Net}}{\text{ }} = {\text{ }}{I_1}{\text{ }} + {\text{ }}{I_2}{\text{ }} + {\text{ }}2\sqrt {{I_1}{I_2}} {\text{ }}\cos \theta

Complete step by step answer:
The path difference for point AA can be written as,
PA  QAPA{\text{ }} - {\text{ }}QA
We can clearly see that this refers to PQPQ,
Thus, we get
ΔxA = PQ\Delta {x_A}{\text{ }} = {\text{ }}PQ
We are given in the question that,
PQ = 5 mPQ{\text{ }} = {\text{ }}5{\text{ }}m
Thus, we get
ΔxA = 5 m\Delta {x_A}{\text{ }} = {\text{ }}5{\text{ }}m
Now, phase difference at point AA is,
ΔϕA = 2πλ × 5\Delta {\phi _A}{\text{ }} = {\text{ }}\dfrac{{2\pi }}{\lambda }{\text{ }} \times {\text{ }}5
Substituting λ = 20 m\lambda {\text{ }} = {\text{ }}20{\text{ }}m, we get
ΔϕA = 2π20 × 5\Delta {\phi _A}{\text{ }} = {\text{ }}\dfrac{{2\pi }}{{20}}{\text{ }} \times {\text{ }}5
After further evaluation, we get
ΔϕA = π2\Delta {\phi _A}{\text{ }} = {\text{ }}\dfrac{\pi }{2}
Since, the distance between QQ and AA is less than that from PP and the phase difference is π2\dfrac{\pi }{2}.
Thus, we can say that the source wave from QQ will lead the wave from PP.
But, we are given in the question that PP leads QQ by π2\dfrac{\pi }{2}.
Hence, net phase difference is,
ΔϕNetA = π2  π2 = 0\Delta {\phi _{Ne{t_A}}}{\text{ }} = {\text{ }}\dfrac{\pi }{2}{\text{ }} - {\text{ }}\dfrac{\pi }{2}{\text{ }} = {\text{ }}0

Now consider the intensities of PP and QQ be Io{I_o}
Thus, net intensity at AA,
IA = Io + Io + 2Io × Io × cos (ΔϕNetA){I_A}{\text{ }} = {\text{ }}{I_o}{\text{ }} + {\text{ }}{I_o}{\text{ }} + {\text{ }}2\sqrt {{I_o}{\text{ }} \times {\text{ }}{I_o}} {\text{ }} \times {\text{ }}\cos {\text{ }}\left( {\Delta {\phi _{Ne{t_A}}}} \right)
After substituting the values, we get
IA = 2 Io + 2Io2 × cos0{I_A}{\text{ }} = {\text{ }}2{\text{ }}{I_o}{\text{ }} + {\text{ }}2\sqrt {{I_o}^2} {\text{ }} \times {\text{ }}\cos 0
After calculations, we get
IA = 4 Io{I_A}{\text{ }} = {\text{ }}4{\text{ }}{I_o}

Now, for the point BB, waves from PP and QQ should travel equal distances.
Thus, the path difference is
ΔxB = 0\Delta {x_B}{\text{ }} = {\text{ }}0
Thus, phase difference at BB
ΔϕB = 0\Delta {\phi _B}{\text{ }} = {\text{ }}0
Thus, net phase difference is
ΔϕNetB = π2\Delta {\phi _{Ne{t_B}}}{\text{ }} = {\text{ }}\dfrac{\pi }{2}
Thus, net intensity at BB,
IB = Io + Io + 2Io × Io × cos (ΔϕNetB){I_B}{\text{ }} = {\text{ }}{I_o}{\text{ }} + {\text{ }}{I_o}{\text{ }} + {\text{ }}2\sqrt {{I_o}{\text{ }} \times {\text{ }}{I_o}} {\text{ }} \times {\text{ }}\cos {\text{ }}\left( {\Delta {\phi _{Ne{t_B}}}} \right)

After substituting the values, we get
IB = 2 Io + 2Io2 × cosπ2{I_B}{\text{ }} = {\text{ }}2{\text{ }}{I_o}{\text{ }} + {\text{ }}2\sqrt {{I_o}^2} {\text{ }} \times {\text{ }}\cos \dfrac{\pi }{2}
After calculations, we get
IB = 2 Io{I_B}{\text{ }} = {\text{ }}2{\text{ }}{I_o}
Again, the path difference for point CC can be written as,
QC  PCQC{\text{ }} - {\text{ }}PC
We can clearly see that this refers to PQPQ,
Thus, we get
ΔxC = PQ\Delta {x_C}{\text{ }} = {\text{ }}PQ
We are given in the question that,
PQ = 5 mPQ{\text{ }} = {\text{ }}5{\text{ }}m
Thus, we get
ΔxC = 5 m\Delta {x_C}{\text{ }} = {\text{ }}5{\text{ }}m

Now, phase difference at point AA is,
ΔϕC = 2πλ × 5\Delta {\phi _C}{\text{ }} = {\text{ }}\dfrac{{2\pi }}{\lambda }{\text{ }} \times {\text{ }}5
Substituting λ = 20 m\lambda {\text{ }} = {\text{ }}20{\text{ }}m, we get
ΔϕC = 2π20 × 5\Delta {\phi _C}{\text{ }} = {\text{ }}\dfrac{{2\pi }}{{20}}{\text{ }} \times {\text{ }}5
After further evaluation, we get
ΔϕC = π2\Delta {\phi _C}{\text{ }} = {\text{ }}\dfrac{\pi }{2}
Since, the distance between PP and CC is less than that from QQ and the phase difference is π2\dfrac{\pi }{2}. Thus, we can say that the source wave from PP will lead the wave from QQ. But, we are given in the question that PP leads QQ by π2\dfrac{\pi }{2}.
Hence, net phase difference is,
ΔϕNetC = π2 + π2 = π\Delta {\phi _{Ne{t_C}}}{\text{ }} = {\text{ }}\dfrac{\pi }{2}{\text{ }} + {\text{ }}\dfrac{\pi }{2}{\text{ }} = {\text{ }}\pi
Thus, net intensity at CC,
IC = Io + Io + 2Io × Io × cos (ΔϕNetC){I_C}{\text{ }} = {\text{ }}{I_o}{\text{ }} + {\text{ }}{I_o}{\text{ }} + {\text{ }}2\sqrt {{I_o}{\text{ }} \times {\text{ }}{I_o}} {\text{ }} \times {\text{ }}\cos {\text{ }}\left( {\Delta {\phi _{Ne{t_C}}}} \right)

After substituting the values, we get
IC = 2 Io + 2Io2 × cosπ{I_C}{\text{ }} = {\text{ }}2{\text{ }}{I_o}{\text{ }} + {\text{ }}2\sqrt {{I_o}^2} {\text{ }} \times {\text{ }}\cos \pi
After calculations, we get
IC = 0{I_C}{\text{ }} = {\text{ }}0
Hence,
The bearing ratio is
IA : IB : IC = 4 Io : 2 Io : 0{I_A}{\text{ }}:{\text{ }}{I_B}{\text{ }}:{\text{ }}{I_C}{\text{ }} = {\text{ }}4{\text{ }}{I_o}{\text{ }}:{\text{ }}2{\text{ }}{I_o}{\text{ }}:{\text{ }}0
Thus, we get
IA : IB : IC = 2 : 1 : 0{I_A}{\text{ }}:{\text{ }}{I_B}{\text{ }}:{\text{ }}{I_C}{\text{ }} = {\text{ }}2{\text{ }}:{\text{ }}1{\text{ }}:{\text{ }}0

Hence, the correct answer is D.

Note: Students should remember that the phase difference to be applied to the formula of intensity is the net phase difference and not the one for the particular case.Students often commit errors while substituting the value of trigonometric ratios. So they have to be very careful while doing so. Students often have a misconception that coherent sources have equal phase, intensities and frequencies but they should remember that coherent sources have equal intensities and frequencies while the phase may not be the same.