Solveeit Logo

Question

Question: $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$, ...

1v1u=1f\frac{1}{v}-\frac{1}{u}=\frac{1}{f},

Answer

v = 40/3

Explanation

Solution

We are given the lens equation

1v1u=1f\frac{1}{v} - \frac{1}{u} = \frac{1}{f}

with the values

u=40,f=+10.u = -40,\quad f = +10.

Substitute the values into the equation:

1v140=1101v+140=110.\frac{1}{v} - \frac{1}{-40} = \frac{1}{10} \quad\Longrightarrow\quad \frac{1}{v} + \frac{1}{40} = \frac{1}{10}.

Rearrange to solve for 1v\frac{1}{v}:

1v=110140=4140=340.\frac{1}{v} = \frac{1}{10} - \frac{1}{40} = \frac{4-1}{40} = \frac{3}{40}.

Taking the reciprocal gives:

v=403.v = \frac{40}{3}.

Minimal Explanation: Substitute u=40u=-40 and f=10f=10 in 1v1u=1f\frac{1}{v}-\frac{1}{u}=\frac{1}{f} to get 1v=110(140)=340\frac{1}{v} = \frac{1}{10} - (-\frac{1}{40}) = \frac{3}{40} so v=403v=\frac{40}{3}.