Solveeit Logo

Question

Question: Find $I=?$...

Find I=?I=?

Answer
  1. I=12MR2I = \frac{1}{2}MR^2, 2) I=310MR2I = \frac{3}{10}MR^2
Explanation

Solution

The problem asks to find the moment of inertia (II) for a hollow cone and a solid cone, both of mass MM, height HH, and base radius RR, about their central axis.

1. Hollow Cone

A hollow cone can be considered as a collection of infinitesimally thin rings. Let's consider an elemental ring at a distance xx from the apex along the height. The radius of this elemental ring is rr, and its width along the slant height is dldl.

From similar triangles (referring to the cone's cross-section): The ratio of radius to height is constant: rx=RH    r=RHx\frac{r}{x} = \frac{R}{H} \implies r = \frac{R}{H}x.

Let LL be the slant height of the cone, L=R2+H2L = \sqrt{R^2 + H^2}. The slant height ll to the elemental ring is related by lx=LH    l=LHx\frac{l}{x} = \frac{L}{H} \implies l = \frac{L}{H}x. The elemental width along the slant height is dl=LHdxdl = \frac{L}{H}dx.

The total surface area of the hollow cone is A=πRLA = \pi R L. The surface mass density σ=MA=MπRL\sigma = \frac{M}{A} = \frac{M}{\pi R L}.

The area of the elemental ring is dA=(2πr)dldA = (2\pi r)dl. Substituting rr and dldl: dA=2π(RHx)(LHdx)=2πRLH2xdxdA = 2\pi \left(\frac{R}{H}x\right) \left(\frac{L}{H}dx\right) = \frac{2\pi R L}{H^2} x \,dx.

The mass of the elemental ring is dm=σdAdm = \sigma \, dA. dm=MπRL2πRLH2xdx=2MH2xdxdm = \frac{M}{\pi R L} \cdot \frac{2\pi R L}{H^2} x \,dx = \frac{2M}{H^2} x \,dx.

The moment of inertia of a thin ring of mass dmdm and radius rr about its central axis is dI=dmr2dI = dm \cdot r^2. dI=(2MH2xdx)(RHx)2=2MH2xdxR2H2x2=2MR2H4x3dxdI = \left(\frac{2M}{H^2} x \,dx\right) \left(\frac{R}{H}x\right)^2 = \frac{2M}{H^2} x \,dx \cdot \frac{R^2}{H^2}x^2 = \frac{2MR^2}{H^4} x^3 \,dx.

To find the total moment of inertia, integrate dIdI from x=0x=0 to x=Hx=H: I=0H2MR2H4x3dx=2MR2H40Hx3dxI = \int_0^H \frac{2MR^2}{H^4} x^3 \,dx = \frac{2MR^2}{H^4} \int_0^H x^3 \,dx I=2MR2H4[x44]0H=2MR2H4(H440)I = \frac{2MR^2}{H^4} \left[\frac{x^4}{4}\right]_0^H = \frac{2MR^2}{H^4} \left(\frac{H^4}{4} - 0\right) I=2MR24=12MR2I = \frac{2MR^2}{4} = \frac{1}{2}MR^2.

2. Solid Cone

A solid cone can be considered as a stack of infinitesimally thin disks. Let's consider an elemental disk at a distance xx from the apex along the height. The radius of this elemental disk is rr, and its thickness is dxdx.

From similar triangles: rx=RH    r=RHx\frac{r}{x} = \frac{R}{H} \implies r = \frac{R}{H}x.

The total volume of the solid cone is V=13πR2HV = \frac{1}{3}\pi R^2 H. The volume mass density ρ=MV=M13πR2H=3MπR2H\rho = \frac{M}{V} = \frac{M}{\frac{1}{3}\pi R^2 H} = \frac{3M}{\pi R^2 H}.

The volume of the elemental disk is dV=πr2dxdV = \pi r^2 \,dx. Substituting rr: dV=π(RHx)2dx=πR2H2x2dxdV = \pi \left(\frac{R}{H}x\right)^2 \,dx = \frac{\pi R^2}{H^2} x^2 \,dx.

The mass of the elemental disk is dm=ρdVdm = \rho \, dV. dm=3MπR2HπR2H2x2dx=3MH3x2dxdm = \frac{3M}{\pi R^2 H} \cdot \frac{\pi R^2}{H^2} x^2 \,dx = \frac{3M}{H^3} x^2 \,dx.

The moment of inertia of a thin disk of mass dmdm and radius rr about its central axis is dI=12dmr2dI = \frac{1}{2} dm \cdot r^2. dI=12(3MH3x2dx)(RHx)2=123MH3x2dxR2H2x2=3MR22H5x4dxdI = \frac{1}{2} \left(\frac{3M}{H^3} x^2 \,dx\right) \left(\frac{R}{H}x\right)^2 = \frac{1}{2} \frac{3M}{H^3} x^2 \,dx \cdot \frac{R^2}{H^2}x^2 = \frac{3MR^2}{2H^5} x^4 \,dx.

To find the total moment of inertia, integrate dIdI from x=0x=0 to x=Hx=H: I=0H3MR22H5x4dx=3MR22H50Hx4dxI = \int_0^H \frac{3MR^2}{2H^5} x^4 \,dx = \frac{3MR^2}{2H^5} \int_0^H x^4 \,dx I=3MR22H5[x55]0H=3MR22H5(H550)I = \frac{3MR^2}{2H^5} \left[\frac{x^5}{5}\right]_0^H = \frac{3MR^2}{2H^5} \left(\frac{H^5}{5} - 0\right) I=3MR210I = \frac{3MR^2}{10}.

The moments of inertia are:

  1. Hollow cone: I=12MR2I = \frac{1}{2}MR^2
  2. Solid cone: I=310MR2I = \frac{3}{10}MR^2