Solveeit Logo

Question

Question: Find $F_{net}$ on +q charge=?...

Find FnetF_{net} on +q charge=?

Answer

kq2a250+352\frac{kq^2}{a^2} \sqrt{50 + 35\sqrt{2}}

Explanation

Solution

Let the side length of the square be 'a'.

Let the charge on which the net force is to be found be Q=+qQ = +q. This charge is located at the bottom-right corner.

The other charges are:

  1. Q1=10qQ_1 = 10q at the top-left corner.
  2. Q2=4qQ_2 = 4q at the top-right corner.
  3. Q3=3qQ_3 = 3q at the bottom-left corner.

All charges are positive, so all forces will be repulsive. Let's define a coordinate system where the charge Q=+qQ=+q is at the origin (0,0)(0,0). Then the positions of the other charges are:

  • Q3=3qQ_3 = 3q at (a,0)(-a, 0)
  • Q2=4qQ_2 = 4q at (0,a)(0, a)
  • Q1=10qQ_1 = 10q at (a,a)(-a, a)

Let k=14πϵ0k = \frac{1}{4\pi\epsilon_0}.

1. Force due to Q3=3qQ_3 = 3q on Q=+qQ=+q (F3F_3):

  • Distance r3=ar_3 = a.
  • The force is repulsive, acting along the positive x-axis (from Q3Q_3 to QQ).
  • Magnitude: F3=kQ3Qr32=k(3q)(q)a2=3kq2a2F_3 = k \frac{Q_3 Q}{r_3^2} = k \frac{(3q)(q)}{a^2} = \frac{3kq^2}{a^2}
  • Vector form: F3=3kq2a2i^\vec{F}_3 = \frac{3kq^2}{a^2} \hat{i}

2. Force due to Q2=4qQ_2 = 4q on Q=+qQ=+q (F2F_2):

  • Distance r2=ar_2 = a.
  • The force is repulsive, acting along the negative y-axis (from Q2Q_2 to QQ).
  • Magnitude: F2=kQ2Qr22=k(4q)(q)a2=4kq2a2F_2 = k \frac{Q_2 Q}{r_2^2} = k \frac{(4q)(q)}{a^2} = \frac{4kq^2}{a^2}
  • Vector form: F2=4kq2a2j^\vec{F}_2 = -\frac{4kq^2}{a^2} \hat{j}

3. Force due to Q1=10qQ_1 = 10q on Q=+qQ=+q (F1F_1):

  • Distance r1=(a0)2+(a0)2=a2+a2=a2r_1 = \sqrt{(-a-0)^2 + (a-0)^2} = \sqrt{a^2 + a^2} = a\sqrt{2}.
  • The force is repulsive, acting along the diagonal from Q1Q_1 to QQ. The direction vector from Q1(a,a)Q_1(-a,a) to Q(0,0)Q(0,0) is (0(a))i^+(0a)j^=ai^aj^(0 - (-a))\hat{i} + (0-a)\hat{j} = a\hat{i} - a\hat{j}.
  • The unit vector in this direction is ai^aj^a2=12(i^j^)\frac{a\hat{i} - a\hat{j}}{a\sqrt{2}} = \frac{1}{\sqrt{2}}(\hat{i} - \hat{j}).
  • Magnitude: F1=kQ1Qr12=k(10q)(q)(a2)2=k10q22a2=5kq2a2F_1 = k \frac{Q_1 Q}{r_1^2} = k \frac{(10q)(q)}{(a\sqrt{2})^2} = k \frac{10q^2}{2a^2} = \frac{5kq^2}{a^2}
  • Vector form: F1=F1×12(i^j^)=5kq2a22(i^j^)=5kq2a22i^5kq2a22j^\vec{F}_1 = F_1 \times \frac{1}{\sqrt{2}}(\hat{i} - \hat{j}) = \frac{5kq^2}{a^2 \sqrt{2}} (\hat{i} - \hat{j}) = \frac{5kq^2}{a^2 \sqrt{2}} \hat{i} - \frac{5kq^2}{a^2 \sqrt{2}} \hat{j}

Net Force (FnetF_{net}):

The net force is the vector sum of these three forces: Fnet=F3+F2+F1\vec{F}_{net} = \vec{F}_3 + \vec{F}_2 + \vec{F}_1

Fnet=(3kq2a2i^)+(4kq2a2j^)+(5kq2a22i^5kq2a22j^)\vec{F}_{net} = \left(\frac{3kq^2}{a^2} \hat{i}\right) + \left(-\frac{4kq^2}{a^2} \hat{j}\right) + \left(\frac{5kq^2}{a^2 \sqrt{2}} \hat{i} - \frac{5kq^2}{a^2 \sqrt{2}} \hat{j}\right)

Group the x and y components: Fx=3kq2a2+5kq2a22=kq2a2(3+52)F_x = \frac{3kq^2}{a^2} + \frac{5kq^2}{a^2 \sqrt{2}} = \frac{kq^2}{a^2} \left(3 + \frac{5}{\sqrt{2}}\right) Fy=4kq2a25kq2a22=kq2a2(4+52)F_y = -\frac{4kq^2}{a^2} - \frac{5kq^2}{a^2 \sqrt{2}} = -\frac{kq^2}{a^2} \left(4 + \frac{5}{\sqrt{2}}\right)

Let F0=kq2a2F_0 = \frac{kq^2}{a^2}. Fx=F0(3+522)=F0(6+522)F_x = F_0 \left(3 + \frac{5\sqrt{2}}{2}\right) = F_0 \left(\frac{6 + 5\sqrt{2}}{2}\right) Fy=F0(4+522)=F0(8+522)F_y = -F_0 \left(4 + \frac{5\sqrt{2}}{2}\right) = -F_0 \left(\frac{8 + 5\sqrt{2}}{2}\right)

The magnitude of the net force is: Fnet=Fx2+Fy2F_{net} = \sqrt{F_x^2 + F_y^2} Fnet=[F0(6+522)]2+[F0(8+522)]2F_{net} = \sqrt{\left[F_0 \left(\frac{6 + 5\sqrt{2}}{2}\right)\right]^2 + \left[-F_0 \left(\frac{8 + 5\sqrt{2}}{2}\right)\right]^2} Fnet=F02(6+52)2+(8+52)2F_{net} = \frac{F_0}{2} \sqrt{(6 + 5\sqrt{2})^2 + (8 + 5\sqrt{2})^2} Fnet=F02(36+602+50)+(64+802+50)F_{net} = \frac{F_0}{2} \sqrt{(36 + 60\sqrt{2} + 50) + (64 + 80\sqrt{2} + 50)} Fnet=F02(86+602)+(114+802)F_{net} = \frac{F_0}{2} \sqrt{(86 + 60\sqrt{2}) + (114 + 80\sqrt{2})} Fnet=F02200+1402F_{net} = \frac{F_0}{2} \sqrt{200 + 140\sqrt{2}} Fnet=F0200+14024F_{net} = F_0 \sqrt{\frac{200 + 140\sqrt{2}}{4}} Fnet=F050+352F_{net} = F_0 \sqrt{50 + 35\sqrt{2}}

Substituting F0=kq2a2F_0 = \frac{kq^2}{a^2}: Fnet=kq2a250+352F_{net} = \frac{kq^2}{a^2} \sqrt{50 + 35\sqrt{2}}

The direction of the net force is given by θ=arctan(FyFx)\theta = \arctan\left(\frac{F_y}{F_x}\right). Since Fx>0F_x > 0 and Fy<0F_y < 0, the net force is in the fourth quadrant.

Explanation of the solution:

  1. Identify all charges and their positions relative to the charge of interest (+q).
  2. Calculate the electrostatic force exerted by each individual charge on the +q charge using Coulomb's Law (F=kQ1Q2r2F = k \frac{Q_1 Q_2}{r^2}).
  3. Determine the direction of each force. Since all charges are positive, all forces are repulsive.
  4. Resolve each force into its x and y components.
  5. Sum the x-components and y-components separately to find the net x-component (FxF_x) and net y-component (FyF_y) of the force.
  6. Calculate the magnitude of the net force using Fnet=Fx2+Fy2F_{net} = \sqrt{F_x^2 + F_y^2}.

Answer:

The net force on the +q charge is kq2a250+352\frac{kq^2}{a^2} \sqrt{50 + 35\sqrt{2}}, where 'a' is the side length of the square and k=14πϵ0k = \frac{1}{4\pi\epsilon_0}.