Solveeit Logo

Question

Question: Find angular momentum of the rolling body about point P shown in figure, at time t = 2 s in each of ...

Find angular momentum of the rolling body about point P shown in figure, at time t = 2 s in each of the following cases

A

Rolling body is a sphere.

B

Rolling body is a cylinder.

C

Friction is sufficient to support rolling.

D

Friction is insufficient, hence slipping is taking place.

Answer

A. Rolling body is a sphere: LP(2)=47MRgsinθL_P(2) = \frac{4}{7}MR g \sin\theta B. Rolling body is a cylinder: LP(2)=23MRgsinθL_P(2) = \frac{2}{3}MR g \sin\theta C. Friction is sufficient to support rolling: LP(2)=2cMRgsinθ1+cL_P(2) = \frac{2cMR g \sin\theta}{1+c}, where ICM=cMR2I_{CM} = cMR^2. D. Friction is insufficient, hence slipping is taking place: LP(2)=2μkMRgcosθL_P(2) = 2\mu_k MR g \cos\theta

Explanation

Solution

The angular momentum about point P is given by LP=rCM/P×MvCM+ICMω\vec{L}_P = \vec{r}_{CM/P} \times M\vec{v}_{CM} + I_{CM}\vec{\omega}. Since rCM/P\vec{r}_{CM/P} and vCM\vec{v}_{CM} are collinear, the first term is zero, so LP=ICMω\vec{L}_P = I_{CM}\vec{\omega}.

For rolling without slipping (Cases A, B, C), the acceleration is a=gsinθ1+ICM/(MR2)a = \frac{g \sin\theta}{1 + I_{CM}/(MR^2)} and angular acceleration is α=a/R\alpha = a/R. The angular velocity at t=2t=2 s is ω(2)=α×2\omega(2) = \alpha \times 2.

Case A (Sphere): ICM=25MR2I_{CM} = \frac{2}{5}MR^2. a=57gsinθa = \frac{5}{7}g \sin\theta. α=5gsinθ7R\alpha = \frac{5g \sin\theta}{7R}. ω(2)=10gsinθ7R\omega(2) = \frac{10g \sin\theta}{7R}. LP(2)=25MR2×10gsinθ7R=47MRgsinθL_P(2) = \frac{2}{5}MR^2 \times \frac{10g \sin\theta}{7R} = \frac{4}{7}MR g \sin\theta.

Case B (Cylinder): ICM=12MR2I_{CM} = \frac{1}{2}MR^2. a=23gsinθa = \frac{2}{3}g \sin\theta. α=2gsinθ3R\alpha = \frac{2g \sin\theta}{3R}. ω(2)=4gsinθ3R\omega(2) = \frac{4g \sin\theta}{3R}. LP(2)=12MR2×4gsinθ3R=23MRgsinθL_P(2) = \frac{1}{2}MR^2 \times \frac{4g \sin\theta}{3R} = \frac{2}{3}MR g \sin\theta.

Case C (Sufficient friction): ICM=cMR2I_{CM} = cMR^2. a=gsinθ1+ca = \frac{g \sin\theta}{1+c}. α=gsinθ(1+c)R\alpha = \frac{g \sin\theta}{(1+c)R}. ω(2)=2gsinθ(1+c)R\omega(2) = \frac{2g \sin\theta}{(1+c)R}. LP(2)=cMR2×2gsinθ(1+c)R=2cMRgsinθ1+cL_P(2) = cMR^2 \times \frac{2g \sin\theta}{(1+c)R} = \frac{2cMR g \sin\theta}{1+c}.

Case D (Insufficient friction): Kinetic friction fk=μkN=μkMgcosθf_k = \mu_k N = \mu_k Mg \cos\theta. Linear acceleration a=gsinθfk/M=gsinθμkgcosθa = g \sin\theta - f_k/M = g \sin\theta - \mu_k g \cos\theta. Angular acceleration α=fkRICM=μkMgcosθRcMR2=μkgcosθcR\alpha = \frac{f_k R}{I_{CM}} = \frac{\mu_k Mg \cos\theta R}{cMR^2} = \frac{\mu_k g \cos\theta}{cR}. Angular velocity ω(2)=α×2=2μkgcosθcR\omega(2) = \alpha \times 2 = \frac{2\mu_k g \cos\theta}{cR}. Angular momentum LP(2)=ICMω(2)=cMR2×2μkgcosθcR=2μkMRgcosθL_P(2) = I_{CM}\omega(2) = cMR^2 \times \frac{2\mu_k g \cos\theta}{cR} = 2\mu_k MR g \cos\theta.