Solveeit Logo

Question

Question: Enthalpy, H $Cs^+(g) + F(g)$ $\Delta H_1 = 79.4kJ/mol$ $Cs(g) + \frac{1}{2}F_2(g)$ $\Delta H_2 = 3...

Enthalpy, H

Cs+(g)+F(g)Cs^+(g) + F(g) ΔH1=79.4kJ/mol\Delta H_1 = 79.4kJ/mol

Cs(g)+12F2(g)Cs(g) + \frac{1}{2}F_2(g) ΔH2=375.7kJ/mol\Delta H_2 = 375.7kJ/mol

Cs(g)+12F2(g)Cs(g) + \frac{1}{2}F_2(g) ΔH3=76.5kJ/mol\Delta H_3 = 76.5kJ/mol

Cs(s)+12F2(g)Cs(s) + \frac{1}{2}F_2(g) Overall change CsF(s)CsF(s) ΔH4=328.2kJ/mol\Delta H_4 = -328.2kJ/mol

Cs+(g)+F(g)Cs^+(g) + F^-(g) ΔH5=756.9kJ/mol\Delta H_5 = -756.9kJ/mol

A

ΔHformation  of  CsF0=1107kJ/mole\Delta H^0_{formation \space of \space CsF} = -1107kJ/mole

B

ΔHLattice  energy  of  CsF0=553.5kJ/mole\Delta H^0_{Lattice \space energy \space of \space CsF} = -553.5kJ/mole

C

ΔHLattice  energy  of  CsF0=756.9kJ/mole\Delta H^0_{Lattice \space energy \space of \space CsF} = -756.9kJ/mole

D

ΔHformation  of  CsF0=553.5kJ/mole\Delta H^0_{formation \space of \space CsF} = -553.5kJ/mole

Answer

C, D

Explanation

Solution

The Born-Haber cycle is used to calculate the lattice energy or the enthalpy of formation of an ionic compound by applying Hess's Law. The cycle breaks down the formation of an ionic solid from its elements into a series of steps for which the enthalpy changes are known or can be determined.

Let's identify each enthalpy change from the given diagram:

  1. Enthalpy of Sublimation of Cesium (ΔHsub\Delta H_{sub}):
    This is the energy required to convert solid Cesium to gaseous Cesium.
    Cs(s)Cs(g)Cs(s) \rightarrow Cs(g)
    From the diagram, the enthalpy change from Cs(s)+12F2(g)Cs(s) + \frac{1}{2}F_2(g) to Cs(g)+12F2(g)Cs(g) + \frac{1}{2}F_2(g) is ΔH3\Delta H_3.
    ΔHsub=ΔH3=76.5 kJ/mol\Delta H_{sub} = \Delta H_3 = 76.5 \text{ kJ/mol}

  2. Ionization Enthalpy of Cesium (IEIE):
    This is the energy required to remove one electron from a gaseous Cesium atom.
    Cs(g)Cs+(g)+eCs(g) \rightarrow Cs^+(g) + e^-
    From the diagram, the enthalpy change from Cs(g)+12F2(g)Cs(g) + \frac{1}{2}F_2(g) to Cs+(g)+12F2(g)Cs^+(g) + \frac{1}{2}F_2(g) is ΔH2\Delta H_2.
    IE=ΔH2=375.7 kJ/molIE = \Delta H_2 = 375.7 \text{ kJ/mol}

  3. Bond Dissociation Enthalpy of Fluorine (12BE\frac{1}{2}BE):
    This is the energy required to break the bond in half a mole of gaseous F₂ to form gaseous F atoms.
    12F2(g)F(g)\frac{1}{2}F_2(g) \rightarrow F(g)
    From the diagram, the enthalpy change from Cs+(g)+12F2(g)Cs^+(g) + \frac{1}{2}F_2(g) to Cs+(g)+F(g)Cs^+(g) + F(g) is ΔH1\Delta H_1.
    12BE=ΔH1=79.4 kJ/mol\frac{1}{2}BE = \Delta H_1 = 79.4 \text{ kJ/mol}

  4. Electron Gain Enthalpy of Fluorine (EGEEGE):
    This is the energy change when an electron is added to a gaseous Fluorine atom to form a gaseous Fluoride ion.
    F(g)+eF(g)F(g) + e^- \rightarrow F^-(g)
    From the diagram, the enthalpy change from Cs+(g)+F(g)Cs^+(g) + F(g) to Cs+(g)+F(g)Cs^+(g) + F^-(g) is ΔH4\Delta H_4.
    EGE=ΔH4=328.2 kJ/molEGE = \Delta H_4 = -328.2 \text{ kJ/mol}

  5. Lattice Energy of Cesium Fluoride (LELE):
    This is the energy released when gaseous Cesium ions and gaseous Fluoride ions combine to form one mole of solid Cesium Fluoride.
    Cs+(g)+F(g)CsF(s)Cs^+(g) + F^-(g) \rightarrow CsF(s)
    From the diagram, the enthalpy change from Cs+(g)+F(g)Cs^+(g) + F^-(g) to CsF(s)CsF(s) is ΔH5\Delta H_5.
    LE=ΔH5=756.9 kJ/molLE = \Delta H_5 = -756.9 \text{ kJ/mol}

Now let's evaluate the given options:

(C) ΔHLattice  energy  of  CsF0=756.9 kJ/mole\Delta H^0_{Lattice \space energy \space of \space CsF} = -756.9 \text{ kJ/mole}
As identified above, the lattice energy (LELE) is directly given as ΔH5=756.9 kJ/mol\Delta H_5 = -756.9 \text{ kJ/mol}.
Therefore, option (C) is correct.

(D) ΔHformation  of  CsF0=553.5 kJ/mole\Delta H^0_{formation \space of \space CsF} = -553.5 \text{ kJ/mole}
The standard enthalpy of formation (ΔHf0\Delta H^0_{f}) of CsF is the overall enthalpy change for the reaction:
Cs(s)+12F2(g)CsF(s)Cs(s) + \frac{1}{2}F_2(g) \rightarrow CsF(s)
According to Hess's Law, the overall enthalpy change is the sum of the enthalpy changes of all the individual steps in the Born-Haber cycle:
ΔHf0=ΔHsub+IE+12BE+EGE+LE\Delta H^0_{f} = \Delta H_{sub} + IE + \frac{1}{2}BE + EGE + LE
ΔHf0=ΔH3+ΔH2+ΔH1+ΔH4+ΔH5\Delta H^0_{f} = \Delta H_3 + \Delta H_2 + \Delta H_1 + \Delta H_4 + \Delta H_5
Substituting the values:
ΔHf0=76.5 kJ/mol+375.7 kJ/mol+79.4 kJ/mol+(328.2 kJ/mol)+(756.9 kJ/mol)\Delta H^0_{f} = 76.5 \text{ kJ/mol} + 375.7 \text{ kJ/mol} + 79.4 \text{ kJ/mol} + (-328.2 \text{ kJ/mol}) + (-756.9 \text{ kJ/mol})
ΔHf0=531.6 kJ/mol328.2 kJ/mol756.9 kJ/mol\Delta H^0_{f} = 531.6 \text{ kJ/mol} - 328.2 \text{ kJ/mol} - 756.9 \text{ kJ/mol}
ΔHf0=203.4 kJ/mol756.9 kJ/mol\Delta H^0_{f} = 203.4 \text{ kJ/mol} - 756.9 \text{ kJ/mol}
ΔHf0=553.5 kJ/mol\Delta H^0_{f} = -553.5 \text{ kJ/mol}
Therefore, option (D) is correct.

(A) ΔHformation  of  CsF0=1107 kJ/mole\Delta H^0_{formation \space of \space CsF} = -1107 \text{ kJ/mole}
This value is incorrect as calculated above.

(B) ΔHLattice  energy  of  CsF0=553.5 kJ/mole\Delta H^0_{Lattice \space energy \space of \space CsF} = -553.5 \text{ kJ/mole}
This value is incorrect. -553.5 kJ/mol is the enthalpy of formation, not the lattice energy.

Based on the calculations, both options (C) and (D) are correct.