Solveeit Logo

Question

Question: Area of $\triangle PBC$ : Area of $\triangle PCA$ : Area of $\triangle PAB$ = $w_1:w_2:w_3$ Prove t...

Area of PBC\triangle PBC : Area of PCA\triangle PCA : Area of PAB\triangle PAB = w1:w2:w3w_1:w_2:w_3

Prove that: {x=w1x1+w2x2+w3x3w1+w2+w3y=w1y1+w2y2+w3y3w1+w2+w3\begin{cases} x = \frac{w_1x_1 + w_2x_2 + w_3x_3}{w_1 + w_2 + w_3} \\ y = \frac{w_1y_1 + w_2y_2 + w_3y_3}{w_1 + w_2 + w_3} \end{cases}

Answer

{x=w1x1+w2x2+w3x3w1+w2+w3y=w1y1+w2y2+w3y3w1+w2+w3\begin{cases} x = \frac{w_1x_1 + w_2x_2 + w_3x_3}{w_1 + w_2 + w_3} \\ y = \frac{w_1y_1 + w_2y_2 + w_3y_3}{w_1 + w_2 + w_3} \end{cases}

Explanation

Solution

The problem requires proving the formula for the coordinates of a point P inside a triangle ABC, given the ratio of the areas of the three triangles formed by P and the vertices of ABC.

Let the vertices of ABC\triangle ABC be A(x1,y1)A(x_1, y_1), B(x2,y2)B(x_2, y_2), and C(x3,y3)C(x_3, y_3). Let P(x,y)P(x, y) be a point inside ABC\triangle ABC.

We are given the ratio of areas: Area(PBC\triangle PBC) : Area(PCA\triangle PCA) : Area(PAB\triangle PAB) = w1:w2:w3w_1 : w_2 : w_3.

Let Area(PBC\triangle PBC) = kw1k w_1, Area(PCA\triangle PCA) = kw2k w_2, and Area(PAB\triangle PAB) = kw3k w_3 for some positive constant kk.

Step 1: Find the ratio in which the side BC is divided by the line segment AP.

Draw a line segment from vertex A through P, intersecting side BC at point D.

Consider triangles PAB\triangle PAB and PCA\triangle PCA. They share the same vertex P. The ratio of their areas is given by: Area(PAB)Area(PCA)=w3w2\frac{\text{Area}(\triangle PAB)}{\text{Area}(\triangle PCA)} = \frac{w_3}{w_2}.

Now, consider triangles ABD\triangle ABD and ACD\triangle ACD. They share the same height from vertex A to the base BC. Thus, the ratio of their areas is equal to the ratio of their bases: Area(ABD)Area(ACD)=BDDC\frac{\text{Area}(\triangle ABD)}{\text{Area}(\triangle ACD)} = \frac{BD}{DC}.

Similarly, consider triangles PBD\triangle PBD and PCD\triangle PCD. They share the same height from vertex P to the base BC. Thus: Area(PBD)Area(PCD)=BDDC\frac{\text{Area}(\triangle PBD)}{\text{Area}(\triangle PCD)} = \frac{BD}{DC}.

From the above two relations, we have: Area(ABD)Area(ACD)=Area(PBD)Area(PCD)\frac{\text{Area}(\triangle ABD)}{\text{Area}(\triangle ACD)} = \frac{\text{Area}(\triangle PBD)}{\text{Area}(\triangle PCD)}. This implies: Area(ABD)Area(PBD)Area(ACD)Area(PCD)=Area(ABD)Area(ACD)\frac{\text{Area}(\triangle ABD) - \text{Area}(\triangle PBD)}{\text{Area}(\triangle ACD) - \text{Area}(\triangle PCD)} = \frac{\text{Area}(\triangle ABD)}{\text{Area}(\triangle ACD)}. The numerator Area(ABD)Area(PBD)\text{Area}(\triangle ABD) - \text{Area}(\triangle PBD) is Area(PAB)\text{Area}(\triangle PAB). The denominator Area(ACD)Area(PCD)\text{Area}(\triangle ACD) - \text{Area}(\triangle PCD) is Area(PCA)\text{Area}(\triangle PCA). So, Area(PAB)Area(PCA)=Area(ABD)Area(ACD)=BDDC\frac{\text{Area}(\triangle PAB)}{\text{Area}(\triangle PCA)} = \frac{\text{Area}(\triangle ABD)}{\text{Area}(\triangle ACD)} = \frac{BD}{DC}.

Therefore, BDDC=w3w2\frac{BD}{DC} = \frac{w_3}{w_2}. This means that point D divides the side BC in the ratio w3:w2w_3 : w_2. Using the section formula, the coordinates of D are: D=(w2x2+w3x3w2+w3,w2y2+w3y3w2+w3)D = \left( \frac{w_2 x_2 + w_3 x_3}{w_2 + w_3}, \frac{w_2 y_2 + w_3 y_3}{w_2 + w_3} \right).

Step 2: Find the ratio in which the line segment AD is divided by P.

Now, consider the line segment AD. Point P lies on AD.

Consider PAB\triangle PAB and PBD\triangle PBD. They share the same height from B to AD. Area(ABP)Area(DBP)=APPD\frac{\text{Area}(\triangle ABP)}{\text{Area}(\triangle DBP)} = \frac{AP}{PD}. Similarly, ACP\triangle ACP and DCP\triangle DCP share height from C to AD. Area(ACP)Area(DCP)=APPD\frac{\text{Area}(\triangle ACP)}{\text{Area}(\triangle DCP)} = \frac{AP}{PD}.

Therefore, APPD=Area(ABP)+Area(ACP)Area(DBP)+Area(DCP)=Area(PAB)+Area(PCA)Area(PBC)\frac{AP}{PD} = \frac{\text{Area}(\triangle ABP) + \text{Area}(\triangle ACP)}{\text{Area}(\triangle DBP) + \text{Area}(\triangle DCP)} = \frac{\text{Area}(\triangle PAB) + \text{Area}(\triangle PCA)}{\text{Area}(\triangle PBC)}. We know Area(PAB\triangle PAB) = kw3k w_3, Area(PCA\triangle PCA) = kw2k w_2, and Area(PBC\triangle PBC) = kw1k w_1. So, APPD=kw3+kw2kw1=w2+w3w1\frac{AP}{PD} = \frac{k w_3 + k w_2}{k w_1} = \frac{w_2 + w_3}{w_1}. This means that point P divides the line segment AD in the ratio (w2+w3):w1(w_2 + w_3) : w_1.

Step 3: Use the section formula to find the coordinates of P.

Point P divides AD in the ratio (w2+w3):w1(w_2 + w_3) : w_1. Using the section formula for point P: x=w1xA+(w2+w3)xDw1+(w2+w3)x = \frac{w_1 \cdot x_A + (w_2 + w_3) \cdot x_D}{w_1 + (w_2 + w_3)} y=w1yA+(w2+w3)yDw1+(w2+w3)y = \frac{w_1 \cdot y_A + (w_2 + w_3) \cdot y_D}{w_1 + (w_2 + w_3)}

Substitute xA=x1x_A = x_1, yA=y1y_A = y_1 and the coordinates of D: x=w1x1+(w2+w3)(w2x2+w3x3w2+w3)w1+w2+w3x = \frac{w_1 x_1 + (w_2 + w_3) \left( \frac{w_2 x_2 + w_3 x_3}{w_2 + w_3} \right)}{w_1 + w_2 + w_3} x=w1x1+w2x2+w3x3w1+w2+w3x = \frac{w_1 x_1 + w_2 x_2 + w_3 x_3}{w_1 + w_2 + w_3}

Similarly for the yy-coordinate: y=w1y1+(w2+w3)(w2y2+w3y3w2+w3)w1+w2+w3y = \frac{w_1 y_1 + (w_2 + w_3) \left( \frac{w_2 y_2 + w_3 y_3}{w_2 + w_3} \right)}{w_1 + w_2 + w_3} y=w1y1+w2y2+w3y3w1+w2+w3y = \frac{w_1 y_1 + w_2 y_2 + w_3 y_3}{w_1 + w_2 + w_3}

Thus, the given relations are proven.

The point P is the barycenter (or center of mass) of the system of masses w1,w2,w3w_1, w_2, w_3 placed at A,B,CA, B, C respectively.