Solveeit Logo

Question

Question: The provided image shows two electric dipoles and a point P. Determine the electric potential at poi...

The provided image shows two electric dipoles and a point P. Determine the electric potential at point P.

A

14πϵ0aq2r2\frac{1}{4\pi\epsilon_0} \frac{aq}{\sqrt{2}r^2}

B

14πϵ0aq2r2-\frac{1}{4\pi\epsilon_0} \frac{aq}{\sqrt{2}r^2}

C

00

D

14πϵ0aqr2\frac{1}{4\pi\epsilon_0} \frac{aq}{r^2}

Answer

14πϵ0aq2r2-\frac{1}{4\pi\epsilon_0} \frac{aq}{\sqrt{2}r^2}

Explanation

Solution

The problem involves calculating the electric potential at point P due to two electric dipoles. We set up a coordinate system with the center of Dipole 2 at the origin (0,0).

  1. Dipole 2: The charges are at (a,0) and (-a,0). Point P is at (0, r). The electric potential at a point on the perpendicular bisector of a dipole is zero. Using the dipole approximation V=14πϵ0pRR3V = \frac{1}{4\pi\epsilon_0} \frac{\vec{p} \cdot \vec{R}}{R^3} for RaR \gg a, where p=2aqi^\vec{p} = 2aq \hat{i} and R=rj^\vec{R} = r \hat{j}, we get V2=0V_2 = 0.

  2. Dipole 1: The center of Dipole 1 is at a horizontal distance 'r' from the origin and a vertical distance 'r' from point P. This leads to two possible locations for the center of Dipole 1: (r, 0) or (r, 2r).

    • If the center is at (r, 0), p1=2aqi^\vec{p_1} = 2aq \hat{i} and R1=(r,r)\vec{R_1} = (-r, r). Then V114πϵ0(2aqi^)(ri^+rj^)(r2)3=14πϵ02aqr22r3=14πϵ0aq2r2V_1 \approx \frac{1}{4\pi\epsilon_0} \frac{(2aq \hat{i}) \cdot (-r \hat{i} + r \hat{j})}{(r\sqrt{2})^3} = \frac{1}{4\pi\epsilon_0} \frac{-2aqr}{2\sqrt{2}r^3} = \frac{1}{4\pi\epsilon_0} \frac{-aq}{\sqrt{2}r^2}.
    • If the center is at (r, 2r), p1=2aqi^\vec{p_1} = 2aq \hat{i} and R1=(r,r)\vec{R_1} = (-r, -r). Then V114πϵ0(2aqi^)(ri^rj^)(r2)3=14πϵ02aqr22r3=14πϵ0aq2r2V_1 \approx \frac{1}{4\pi\epsilon_0} \frac{(2aq \hat{i}) \cdot (-r \hat{i} - r \hat{j})}{(r\sqrt{2})^3} = \frac{1}{4\pi\epsilon_0} \frac{-2aqr}{2\sqrt{2}r^3} = \frac{1}{4\pi\epsilon_0} \frac{-aq}{\sqrt{2}r^2}.
  3. Total Potential: The total potential at P is V=V1+V2=V1+0=14πϵ0aq2r2V = V_1 + V_2 = V_1 + 0 = -\frac{1}{4\pi\epsilon_0} \frac{aq}{\sqrt{2}r^2}.