Solveeit Logo

Question

Question: For reaction $MnO_2 + 4HCl \longrightarrow MnCl_2 + 2H_2O + Cl_2(g)$ 261 gm $MnO_2$ mixed with 448...

For reaction

MnO2+4HClMnCl2+2H2O+Cl2(g)MnO_2 + 4HCl \longrightarrow MnCl_2 + 2H_2O + Cl_2(g)

261 gm MnO2MnO_2 mixed with 448 litre of HCl gas at 273C273^\circ C & 1 atm pressure to produce pro [NA=6×1023[N_A = 6 \times 10^{23}; Atomic mass of Mn = 55, Cl = 35.5]

Select correct statement(s).

A

MnO2MnO_2 is limiting reagent

B

Chlorine gas produced contains 15×102315 \times 10^{23} molecules.

C

Moles of excess reactant left is 0.5 moles

D

If % yield of reaction is 50%, then mass of MnCl2MnCl_2 obtained will be 315.

Answer

B, C

Explanation

Solution

The problem involves stoichiometry, limiting reagent calculation, and yield determination for the given reaction:

MnO2+4HClMnCl2+2H2O+Cl2(g)MnO_2 + 4HCl \longrightarrow MnCl_2 + 2H_2O + Cl_2(g)

1. Calculate molar masses of reactants and products:

  • Molar mass of MnO2=55+2×16=87 g/molMnO_2 = 55 + 2 \times 16 = 87 \text{ g/mol}
  • Molar mass of HCl=1+35.5=36.5 g/molHCl = 1 + 35.5 = 36.5 \text{ g/mol}
  • Molar mass of Cl2=2×35.5=71 g/molCl_2 = 2 \times 35.5 = 71 \text{ g/mol}
  • Molar mass of MnCl2=55+2×35.5=55+71=126 g/molMnCl_2 = 55 + 2 \times 35.5 = 55 + 71 = 126 \text{ g/mol}

2. Calculate initial moles of reactants:

  • Moles of MnO2=massmolar mass=261 gm87 gm/mol=3 molMnO_2 = \frac{\text{mass}}{\text{molar mass}} = \frac{261 \text{ gm}}{87 \text{ gm/mol}} = 3 \text{ mol}
  • Moles of HCl gas (using Ideal Gas Law, PV=nRT):

Given: P = 1 atm, V = 448 L, T = 273C=273+273=546273^\circ C = 273 + 273 = 546 K, R = 0.0821 L atm/mol K

nHCl=PVRT=1 atm×448 L0.0821 L atm/mol K×546 K=44844.832610 moln_{HCl} = \frac{PV}{RT} = \frac{1 \text{ atm} \times 448 \text{ L}}{0.0821 \text{ L atm/mol K} \times 546 \text{ K}} = \frac{448}{44.8326} \approx 10 \text{ mol}

3. Determine the limiting reagent:

The balanced equation shows that 1 mole of MnO2MnO_2 reacts with 4 moles of HCl.

  • For MnO2MnO_2: initial molesstoichiometric coefficient=31=3\frac{\text{initial moles}}{\text{stoichiometric coefficient}} = \frac{3}{1} = 3
  • For HCl: initial molesstoichiometric coefficient=104=2.5\frac{\text{initial moles}}{\text{stoichiometric coefficient}} = \frac{10}{4} = 2.5

Since 2.5 < 3, HCl is the limiting reagent.

Evaluate the options:

(A) MnO2MnO_2 is limiting reagent.

This statement is incorrect. HCl is the limiting reagent.

(B) Chlorine gas produced contains 15×102315 \times 10^{23} molecules.

Based on the limiting reagent (HCl):

From the stoichiometry, 4 moles of HCl produce 1 mole of Cl2Cl_2.

Moles of Cl2Cl_2 produced = 10 mol HCl×1 mol Cl24 mol HCl=2.5 mol Cl210 \text{ mol HCl} \times \frac{1 \text{ mol } Cl_2}{4 \text{ mol HCl}} = 2.5 \text{ mol } Cl_2.

Number of Cl2Cl_2 molecules = moles ×NA=2.5 mol×6×1023 molecules/mol=15×1023\times N_A = 2.5 \text{ mol} \times 6 \times 10^{23} \text{ molecules/mol} = 15 \times 10^{23} molecules.

This statement is correct.

(C) Moles of excess reactant left is 0.5 moles.

The excess reactant is MnO2MnO_2.

Moles of MnO2MnO_2 reacted = 10 mol HCl×1 mol MnO24 mol HCl=2.5 mol MnO210 \text{ mol HCl} \times \frac{1 \text{ mol } MnO_2}{4 \text{ mol HCl}} = 2.5 \text{ mol } MnO_2.

Moles of excess MnO2MnO_2 left = Initial moles - Reacted moles = 3 mol2.5 mol=0.5 mol3 \text{ mol} - 2.5 \text{ mol} = 0.5 \text{ mol}.

This statement is correct.

(D) If % yield of reaction is 50%, then mass of MnCl2MnCl_2 obtained will be 315.

First, calculate the theoretical mass of MnCl2MnCl_2 produced:

From stoichiometry, 4 moles of HCl produce 1 mole of MnCl2MnCl_2.

Moles of MnCl2MnCl_2 produced = 10 mol HCl×1 mol MnCl24 mol HCl=2.5 mol MnCl210 \text{ mol HCl} \times \frac{1 \text{ mol } MnCl_2}{4 \text{ mol HCl}} = 2.5 \text{ mol } MnCl_2.

Theoretical mass of MnCl2=2.5 mol×126 g/mol=315 gmMnCl_2 = 2.5 \text{ mol} \times 126 \text{ g/mol} = 315 \text{ gm}.

If the % yield is 50%, the actual mass of MnCl2MnCl_2 obtained would be:

Actual mass = Theoretical mass ×% yield100=315 gm×50100=157.5 gm\times \frac{\% \text{ yield}}{100} = 315 \text{ gm} \times \frac{50}{100} = 157.5 \text{ gm}.

This statement is incorrect.

Conclusion:

Statements (B) and (C) are correct.

Explanation of the solution:

  1. Calculated initial moles of MnO2MnO_2 from its mass and molar mass.
  2. Calculated initial moles of HCl gas using the Ideal Gas Law (PV=nRT) as conditions were not STP.
  3. Determined the limiting reagent by comparing the ratio of initial moles to stoichiometric coefficients. HCl was found to be the limiting reagent.
  4. Used the moles of the limiting reagent (HCl) to calculate the theoretical moles and number of molecules of Cl2Cl_2 produced, verifying option (B).
  5. Used the moles of the limiting reagent (HCl) to calculate the moles of MnO2MnO_2 consumed and subsequently the moles of excess MnO2MnO_2 left, verifying option (C).
  6. Calculated the theoretical mass of MnCl2MnCl_2 produced. Then, calculated the actual mass of MnCl2MnCl_2 at 50% yield, disproving option (D).

Answer: B, C