Solveeit Logo

Question

Question: The problem asks for the equivalent resistance between points A and B of the given circuit. This is ...

The problem asks for the equivalent resistance between points A and B of the given circuit. This is a complex network of resistors.

Answer

2.6577 \Omega

Explanation

Solution

The given circuit is a complex network of resistors. We use nodal analysis to find the equivalent resistance between points A and B.

Let the potential at point A be VA=VV_A = V and the potential at point B be VB=0V_B = 0. Let the potentials at the internal nodes be VCV_C (top-left), VDV_D (top-right), VEV_E (bottom-left), and VFV_F (bottom-right). The two 1Ω1 \, \Omega resistors at the bottom are in series, forming a 2Ω2 \, \Omega resistance between node E and node B.

Applying Kirchhoff's Current Law (KCL) at each node:

  1. Node C: VCVA1.5+VCVD12+VCVE8=0\frac{V_C - V_A}{1.5} + \frac{V_C - V_D}{12} + \frac{V_C - V_E}{8} = 0

    Multiplying by 24 (LCM of 1.5, 12, 8): 16(VCVA)+2(VCVD)+3(VCVE)=016(V_C - V_A) + 2(V_C - V_D) + 3(V_C - V_E) = 0 21VC2VD3VE=16VA21V_C - 2V_D - 3V_E = 16V_A (Eq. 1)

  2. Node D: VDVC12+VDVB0.5+VDVF4=0\frac{V_D - V_C}{12} + \frac{V_D - V_B}{0.5} + \frac{V_D - V_F}{4} = 0

    Multiplying by 12 (LCM of 12, 0.5, 4): (VDVC)+24(VDVB)+3(VDVF)=0(V_D - V_C) + 24(V_D - V_B) + 3(V_D - V_F) = 0

    Since VB=0V_B = 0: VC+28VD3VF=0-V_C + 28V_D - 3V_F = 0 (Eq. 2)

  3. Node E: VEVA2+VEVC8+VEVF6+VEVB2=0\frac{V_E - V_A}{2} + \frac{V_E - V_C}{8} + \frac{V_E - V_F}{6} + \frac{V_E - V_B}{2} = 0

    Multiplying by 24 (LCM of 2, 8, 6, 2): 12(VEVA)+3(VEVC)+4(VEVF)+12(VEVB)=012(V_E - V_A) + 3(V_E - V_C) + 4(V_E - V_F) + 12(V_E - V_B) = 0

    Since VB=0V_B = 0: 3VC+31VE4VF=12VA-3V_C + 31V_E - 4V_F = 12V_A (Eq. 3)

  4. Node F: VFVD4+VFVE6+VFVB1=0\frac{V_F - V_D}{4} + \frac{V_F - V_E}{6} + \frac{V_F - V_B}{1} = 0

    Multiplying by 12 (LCM of 4, 6, 1): 3(VFVD)+2(VFVE)+12(VFVB)=03(V_F - V_D) + 2(V_F - V_E) + 12(V_F - V_B) = 0

    Since VB=0V_B = 0: 3VD2VE+17VF=0-3V_D - 2V_E + 17V_F = 0 (Eq. 4)

Let VA=1VV_A = 1 \, V. We solve the system of linear equations for VC,VD,VE,VFV_C, V_D, V_E, V_F.

From Eq. 2: VC=28VD3VFV_C = 28V_D - 3V_F From Eq. 4: VD=17VF2VE3V_D = \frac{17V_F - 2V_E}{3}

Substitute VCV_C into Eq. 1: 21(28VD3VF)2VD3VE=1621(28V_D - 3V_F) - 2V_D - 3V_E = 16 586VD3VE63VF=16586V_D - 3V_E - 63V_F = 16 (Eq. 5)

Substitute VDV_D into Eq. 5: 586(17VF2VE3)3VE63VF=16586\left(\frac{17V_F - 2V_E}{3}\right) - 3V_E - 63V_F = 16 586(17VF2VE)9VE189VF=48586(17V_F - 2V_E) - 9V_E - 189V_F = 48 9962VF1172VE9VE189VF=489962V_F - 1172V_E - 9V_E - 189V_F = 48 1181VE+9773VF=48-1181V_E + 9773V_F = 48 (Eq. 6)

Substitute VCV_C into Eq. 3: 3(28VD3VF)+31VE4VF=12-3(28V_D - 3V_F) + 31V_E - 4V_F = 12 84VD+9VF+31VE4VF=12-84V_D + 9V_F + 31V_E - 4V_F = 12 31VE84VD+5VF=1231V_E - 84V_D + 5V_F = 12 (Eq. 7)

Substitute VDV_D into Eq. 7: 31VE84(17VF2VE3)+5VF=1231V_E - 84\left(\frac{17V_F - 2V_E}{3}\right) + 5V_F = 12 31VE28(17VF2VE)+5VF=1231V_E - 28(17V_F - 2V_E) + 5V_F = 12 31VE476VF+56VE+5VF=1231V_E - 476V_F + 56V_E + 5V_F = 12 87VE471VF=1287V_E - 471V_F = 12 (Eq. 8)

Now we solve the system of Eq. 6 and Eq. 8 for VEV_E and VFV_F: (Eq. 6) 1181VE+9773VF=48-1181V_E + 9773V_F = 48 (Eq. 8) 87VE471VF=1287V_E - 471V_F = 12

From Eq. 8, divide by 3: 29VE157VF=4    VE=4+157VF2929V_E - 157V_F = 4 \implies V_E = \frac{4 + 157V_F}{29} Substitute VEV_E into Eq. 6: 1181(4+157VF29)+9773VF=48-1181\left(\frac{4 + 157V_F}{29}\right) + 9773V_F = 48 4724185497VF+283417VF=1392-4724 - 185497V_F + 283417V_F = 1392 97920VF=611697920V_F = 6116 VF=611697920=152924480V_F = \frac{6116}{97920} = \frac{1529}{24480}

Substitute VFV_F back into the expression for VEV_E: VE=4+157×15292448029=4+2400732448029=97920+2400732448029=33799324480×29=337993710000V_E = \frac{4 + 157 \times \frac{1529}{24480}}{29} = \frac{4 + \frac{240073}{24480}}{29} = \frac{\frac{97920 + 240073}{24480}}{29} = \frac{337993}{24480 \times 29} = \frac{337993}{710000}

Substitute VEV_E and VFV_F into the expression for VDV_D: VD=17VF2VE3=17×1529244802×3379937100003=26093244803379933550003V_D = \frac{17V_F - 2V_E}{3} = \frac{17 \times \frac{1529}{24480} - 2 \times \frac{337993}{710000}}{3} = \frac{\frac{26093}{24480} - \frac{337993}{355000}}{3} VD=26093×355000337993×244803×24480×355000=9263015000827402304026038800000=98899196026038800000=403571065000V_D = \frac{26093 \times 355000 - 337993 \times 24480}{3 \times 24480 \times 355000} = \frac{9263015000 - 8274023040}{26038800000} = \frac{988991960}{26038800000} = \frac{40357}{1065000}

The total current IABI_{AB} flowing from A to B is the sum of currents leaving A, or entering B. IAB=VDVB0.5+VFVB1+VEVB2I_{AB} = \frac{V_D - V_B}{0.5} + \frac{V_F - V_B}{1} + \frac{V_E - V_B}{2}

Since VB=0V_B = 0: IAB=VD0.5+VF+VE2=2VD+VF+0.5VEI_{AB} = \frac{V_D}{0.5} + V_F + \frac{V_E}{2} = 2V_D + V_F + 0.5V_E IAB=2×403571065000+152924480+0.5×337993710000I_{AB} = 2 \times \frac{40357}{1065000} + \frac{1529}{24480} + 0.5 \times \frac{337993}{710000}

Converting to decimals for approximation: VD0.0378938967V_D \approx 0.0378938967 VF0.0624599673V_F \approx 0.0624599673 VE0.4760464789V_E \approx 0.4760464789

IAB2(0.0378938967)+0.0624599673+0.5(0.4760464789)I_{AB} \approx 2(0.0378938967) + 0.0624599673 + 0.5(0.4760464789) IAB0.0757877934+0.0624599673+0.23802323945I_{AB} \approx 0.0757877934 + 0.0624599673 + 0.23802323945 IAB0.376270999I_{AB} \approx 0.376270999

The equivalent resistance Req=VAIAB=10.3762709992.6577ΩR_{eq} = \frac{V_A}{I_{AB}} = \frac{1}{0.376270999} \approx 2.6577 \, \Omega.