Solveeit Logo

Question

Question: A sleeve of mass \(M = 10\) kg can slide on a horizontal frictionless rod. A block of mass \(m = 2.0...

A sleeve of mass M=10M = 10 kg can slide on a horizontal frictionless rod. A block of mass m=2.0m = 2.0 kg is suspended at the mid-point of a light inextensible cord of length l=102.5l = 102.5 cm, one end of which is attached to the sleeve and the other to one end of the rod. Initially the sleeve is held at rest and the angle between the rod and a cord segment is θ=θ0=sin1(0.8)\theta = \theta_0 = \sin^{-1}(0.8) as shown in the figure. If a constant horizontal force F=50F = 50 N is applied on the sleeve, find its speed when the angle between cord segments and the rod becomes θ=sin1(0.6)\theta = \sin^{-1}(0.6)?

Answer

1.2 m/s

Explanation

Solution

The problem involves a system of a sleeve and a block connected by a cord, moving under the influence of an external horizontal force and gravity. We can use the work-energy theorem for the system to find the final speed of the sleeve.

1. Define System and Coordinate System:

The system consists of the sleeve (mass MM) and the block (mass mm). The rod is horizontal and frictionless. Let the fixed end of the rod be the origin (0,0). The sleeve moves along the x-axis. The block moves in the x-y plane.

2. Express Positions in terms of Angle θ\theta:

The total length of the cord is ll. Since the block is suspended at the mid-point, each segment of the cord has length l/2l/2. Let the angle between the rod and each cord segment be θ\theta. The vertical depth of the block below the rod, hh, is given by: h=l2sinθh = \frac{l}{2} \sin \theta The horizontal position of the block, xmx_m, from the fixed end is: xm=l2cosθx_m = \frac{l}{2} \cos \theta The horizontal position of the sleeve, xMx_M, from the fixed end is the sum of the horizontal projections of both cord segments: xM=l2cosθ+l2cosθ=lcosθx_M = \frac{l}{2} \cos \theta + \frac{l}{2} \cos \theta = l \cos \theta

3. Calculate Work Done by External Force (WFW_F):

The constant horizontal force FF acts on the sleeve. The work done by FF is WF=FΔxMW_F = F \Delta x_M. Initial angle θ0=sin1(0.8)\theta_0 = \sin^{-1}(0.8), so sinθ0=0.8\sin \theta_0 = 0.8. This implies cosθ0=1(0.8)2=0.6\cos \theta_0 = \sqrt{1 - (0.8)^2} = 0.6. Final angle θ=sin1(0.6)\theta = \sin^{-1}(0.6), so sinθ=0.6\sin \theta = 0.6. This implies cosθ=1(0.6)2=0.8\cos \theta = \sqrt{1 - (0.6)^2} = 0.8. Initial position of sleeve: xM,i=lcosθ0x_{M,i} = l \cos \theta_0. Final position of sleeve: xM,f=lcosθx_{M,f} = l \cos \theta. WF=F(xM,fxM,i)=F(lcosθlcosθ0)W_F = F (x_{M,f} - x_{M,i}) = F (l \cos \theta - l \cos \theta_0) Given F=50F = 50 N, l=102.5l = 102.5 cm = 1.025 m. WF=50×1.025×(0.80.6)=50×1.025×0.2=10.25W_F = 50 \times 1.025 \times (0.8 - 0.6) = 50 \times 1.025 \times 0.2 = 10.25 J.

4. Calculate Change in Potential Energy (ΔU\Delta U):

Only the gravitational potential energy of the block changes. Let the rod level be the reference (U=0U=0). Initial potential energy of block: Ui=mghi=mg(l2sinθ0)U_i = -m g h_i = -m g \left(\frac{l}{2} \sin \theta_0\right). Final potential energy of block: Uf=mghf=mg(l2sinθ)U_f = -m g h_f = -m g \left(\frac{l}{2} \sin \theta\right). Change in potential energy: ΔU=UfUi=12mgl(sinθsinθ0)=12mgl(sinθ0sinθ)\Delta U = U_f - U_i = -\frac{1}{2} m g l (\sin \theta - \sin \theta_0) = \frac{1}{2} m g l (\sin \theta_0 - \sin \theta). Given m=2.0m = 2.0 kg, g=10g = 10 m/s2^2 (standard assumption for clean numbers unless specified otherwise). ΔU=12×2.0×10×1.025×(0.80.6)=10×1.025×0.2=2.05\Delta U = \frac{1}{2} \times 2.0 \times 10 \times 1.025 \times (0.8 - 0.6) = 10 \times 1.025 \times 0.2 = 2.05 J. (The potential energy increases because the block moves upwards as θ\theta decreases).

5. Relate Velocities of Sleeve and Block:

Let VMV_M be the speed of the sleeve and vv be the speed of the block. Differentiating xM=lcosθx_M = l \cos \theta with respect to time: VM=dxMdt=lsinθdθdt=lsinθdθdtV_M = \left| \frac{dx_M}{dt} \right| = \left| -l \sin \theta \frac{d\theta}{dt} \right| = l \sin \theta \left| \frac{d\theta}{dt} \right|. The position vector of the block is rm=(l2cosθ)i^(l2sinθ)j^\vec{r}_m = \left(\frac{l}{2} \cos \theta\right) \hat{i} - \left(\frac{l}{2} \sin \theta\right) \hat{j}. Differentiating with respect to time: v=drmdt=l2sinθdθdti^l2cosθdθdtj^\vec{v} = \frac{d\vec{r}_m}{dt} = -\frac{l}{2} \sin \theta \frac{d\theta}{dt} \hat{i} - \frac{l}{2} \cos \theta \frac{d\theta}{dt} \hat{j}. The speed of the block is v=v=(l2sinθdθdt)2+(l2cosθdθdt)2v = |\vec{v}| = \sqrt{\left(-\frac{l}{2} \sin \theta \frac{d\theta}{dt}\right)^2 + \left(-\frac{l}{2} \cos \theta \frac{d\theta}{dt}\right)^2} v=(l2)2(dθdt)2(sin2θ+cos2θ)=l2dθdtv = \sqrt{\left(\frac{l}{2}\right)^2 \left(\frac{d\theta}{dt}\right)^2 (\sin^2 \theta + \cos^2 \theta)} = \frac{l}{2} \left| \frac{d\theta}{dt} \right|. From VM=lsinθdθdtV_M = l \sin \theta \left| \frac{d\theta}{dt} \right|, we get dθdt=VMlsinθ\left| \frac{d\theta}{dt} \right| = \frac{V_M}{l \sin \theta}. Substitute this into the expression for vv: v=l2(VMlsinθ)=VM2sinθv = \frac{l}{2} \left(\frac{V_M}{l \sin \theta}\right) = \frac{V_M}{2 \sin \theta}.

6. Calculate Change in Kinetic Energy (ΔK\Delta K):

Initial kinetic energy Ki=0K_i = 0 (sleeve and block are initially at rest). Final kinetic energy Kf=12MVM2+12mv2K_f = \frac{1}{2} M V_M^2 + \frac{1}{2} m v^2. Substitute v=VM2sinθv = \frac{V_M}{2 \sin \theta}: Kf=12MVM2+12m(VM2sinθ)2=12VM2(M+m4sin2θ)K_f = \frac{1}{2} M V_M^2 + \frac{1}{2} m \left(\frac{V_M}{2 \sin \theta}\right)^2 = \frac{1}{2} V_M^2 \left(M + \frac{m}{4 \sin^2 \theta}\right). ΔK=KfKi=Kf\Delta K = K_f - K_i = K_f.

7. Apply Work-Energy Theorem:

Wext=ΔK+ΔUW_{ext} = \Delta K + \Delta U WF=12VM2(M+m4sin2θ)+ΔUW_F = \frac{1}{2} V_M^2 \left(M + \frac{m}{4 \sin^2 \theta}\right) + \Delta U 10.25=12VM2(10+24×(0.6)2)+2.0510.25 = \frac{1}{2} V_M^2 \left(10 + \frac{2}{4 \times (0.6)^2}\right) + 2.05 10.252.05=12VM2(10+24×0.36)10.25 - 2.05 = \frac{1}{2} V_M^2 \left(10 + \frac{2}{4 \times 0.36}\right) 8.2=12VM2(10+12×0.36)8.2 = \frac{1}{2} V_M^2 \left(10 + \frac{1}{2 \times 0.36}\right) 8.2=12VM2(10+10.72)8.2 = \frac{1}{2} V_M^2 \left(10 + \frac{1}{0.72}\right) 8.2=12VM2(10+10072)8.2 = \frac{1}{2} V_M^2 \left(10 + \frac{100}{72}\right) 8.2=12VM2(10+2518)8.2 = \frac{1}{2} V_M^2 \left(10 + \frac{25}{18}\right) 8.2=12VM2(180+2518)8.2 = \frac{1}{2} V_M^2 \left(\frac{180 + 25}{18}\right) 8.2=12VM2(20518)8.2 = \frac{1}{2} V_M^2 \left(\frac{205}{18}\right) 16.4=VM2(20518)16.4 = V_M^2 \left(\frac{205}{18}\right) VM2=16.4×18205=295.2205=1.44V_M^2 = \frac{16.4 \times 18}{205} = \frac{295.2}{205} = 1.44 VM=1.44=1.2V_M = \sqrt{1.44} = 1.2 m/s.

The speed of the sleeve when the angle becomes sin1(0.6)\sin^{-1}(0.6) is 1.2 m/s.

Explanation of the solution:

  1. Identify Initial and Final States: Determine given parameters (M,m,l,F,θ0,θM, m, l, F, \theta_0, \theta) for initial (rest) and final states.
  2. Express Positions: Relate the sleeve's horizontal position (xMx_M) and the block's vertical position (hh) to the angle θ\theta using trigonometry and the cord length ll. Specifically, xM=lcosθx_M = l \cos \theta and h=(l/2)sinθh = (l/2) \sin \theta.
  3. Work-Energy Theorem: Apply the work-energy theorem for the system (sleeve + block): Wext=ΔK+ΔUW_{ext} = \Delta K + \Delta U.
  4. Calculate Work Done by External Force: WF=FΔxM=F(lcosθlcosθ0)W_F = F \cdot \Delta x_M = F (l \cos \theta - l \cos \theta_0).
  5. Calculate Change in Potential Energy: ΔU=mg(hihf)=12mgl(sinθ0sinθ)\Delta U = m g (h_i - h_f) = \frac{1}{2} m g l (\sin \theta_0 - \sin \theta).
  6. Relate Velocities: Differentiate the position equations with respect to time to find the speeds of the sleeve (VMV_M) and block (vv). Establish the relationship v=VM2sinθv = \frac{V_M}{2 \sin \theta}.
  7. Calculate Change in Kinetic Energy: ΔK=KfKi=12MVM2+12mv2\Delta K = K_f - K_i = \frac{1}{2} M V_M^2 + \frac{1}{2} m v^2. Substitute the velocity relation to express ΔK\Delta K solely in terms of VMV_M.
  8. Solve for VMV_M: Substitute all calculated values into the work-energy equation and solve for VMV_M.

Answer:

The speed of the sleeve when the angle between cord segments and the rod becomes θ=sin1(0.6)\theta = \sin^{-1}(0.6) is 1.2 m/s.