Solveeit Logo

Question

Question: عند توصيل الفولتميتر عبر بطارية قوتها الدافعة الكهربية 30 ومهملة المقاومة الداخلية كما موضح بالشكل ا...

عند توصيل الفولتميتر عبر بطارية قوتها الدافعة الكهربية 30 ومهملة المقاومة الداخلية كما موضح بالشكل الحرف مؤشرة إلى نهاية تدريجه وعند توصيل مقاومة (R) مع مضاعف الجهد داخل الفواتيميتر بينما يتصل بطرفي البطارية الحرف مؤشرة إلى منتصف تدريجه

ما قيمة المقاومة (R) وطريقة توصيلها ؟

A

3000 Ω\Omega ، على التوازي.

B

3000 Ω\Omega ، على التوالي.

C

1500 Ω\Omega ، على التوالي.

D

1500 Ω\Omega ، على التوازي.

Answer

3000 Ω\Omega ، على التوالي.

Explanation

Solution

The problem describes a voltmeter constructed from a galvanometer and a series multiplier resistance. We need to determine the value and connection method of an additional resistance (R) added to the multiplier part, given the change in deflection.

Step 1: Calculate the full-scale deflection current (IGI_G) of the galvanometer.

Initially, the voltmeter consists of a galvanometer with resistance RG=50ΩR_G = 50 \, \Omega connected in series with a multiplier resistance RM=2950ΩR_M = 2950 \, \Omega. The total resistance of the voltmeter (RVR_{V}) is: RV=RG+RM=50Ω+2950Ω=3000ΩR_{V} = R_G + R_M = 50 \, \Omega + 2950 \, \Omega = 3000 \, \Omega

When this voltmeter is connected across a battery with EMF V=3VV = 3 \, V, the pointer deflects to the end of its scale. This means 3V3 \, V is the full-scale voltage (VmaxV_{max}) and the current flowing through the galvanometer is the full-scale deflection current (IGI_G). Using Ohm's Law: Vmax=IG×RVV_{max} = I_G \times R_{V} 3V=IG×3000Ω3 \, V = I_G \times 3000 \, \Omega IG=3V3000Ω=0.001A=1mAI_G = \frac{3 \, V}{3000 \, \Omega} = 0.001 \, A = 1 \, mA

Step 2: Determine the new total resistance of the voltmeter when R is added.

When the resistance (R) is added, the voltmeter is still connected to the 3V3 \, V battery, but the pointer deflects to the middle of its scale. This means the current flowing through the galvanometer is half of the full-scale deflection current: I=IG2=1mA2=0.5mA=0.0005AI' = \frac{I_G}{2} = \frac{1 \, mA}{2} = 0.5 \, mA = 0.0005 \, A

Let the new total resistance of the voltmeter be RVR'_{V}. Using Ohm's Law for this new configuration: V=I×RVV = I' \times R'_{V} 3V=0.0005A×RV3 \, V = 0.0005 \, A \times R'_{V} RV=3V0.0005A=6000ΩR'_{V} = \frac{3 \, V}{0.0005 \, A} = 6000 \, \Omega

Step 3: Determine the value and connection of R.

The galvanometer resistance RG=50ΩR_G = 50 \, \Omega remains unchanged and is always in series with the effective multiplier resistance. The new total resistance of the voltmeter is RV=RG+RM,effR'_{V} = R_G + R'_{M,eff}, where RM,effR'_{M,eff} is the effective resistance of the multiplier part after adding R. 6000Ω=50Ω+RM,eff6000 \, \Omega = 50 \, \Omega + R'_{M,eff} RM,eff=6000Ω50Ω=5950ΩR'_{M,eff} = 6000 \, \Omega - 50 \, \Omega = 5950 \, \Omega

The original multiplier resistance was RM=2950ΩR_M = 2950 \, \Omega. We need to connect R with RMR_M to get an effective resistance of RM,eff=5950ΩR'_{M,eff} = 5950 \, \Omega.

  • If R is connected in parallel with RMR_M: The equivalent resistance of two resistors in parallel is always less than the smallest individual resistance. Since RM=2950ΩR_M = 2950 \, \Omega, a parallel combination with R would result in RM,eff<2950ΩR'_{M,eff} < 2950 \, \Omega. However, we calculated RM,eff=5950ΩR'_{M,eff} = 5950 \, \Omega. Therefore, R cannot be connected in parallel with RMR_M.

  • If R is connected in series with RMR_M: The equivalent resistance of two resistors in series is their sum. RM,eff=RM+RR'_{M,eff} = R_M + R 5950Ω=2950Ω+R5950 \, \Omega = 2950 \, \Omega + R R=5950Ω2950Ω=3000ΩR = 5950 \, \Omega - 2950 \, \Omega = 3000 \, \Omega

This result is consistent with the requirement. Thus, the resistance R is 3000Ω3000 \, \Omega and it is connected in series with the multiplier resistance.