Solveeit Logo

Question

Question: To find the resultant force, we resolve each force into its x and y components and then sum them up....

To find the resultant force, we resolve each force into its x and y components and then sum them up. Let the positive x-axis be along 'x' and the positive y-axis be along 'y'. Angles are measured counter-clockwise from the positive x-axis.

  1. Force Q (10 N): Angle with +x-axis = 3030^\circ. Qx=10cos30=10(32)=53Q_x = 10 \cos 30^\circ = 10 \left(\frac{\sqrt{3}}{2}\right) = 5\sqrt{3} N Qy=10sin30=10(12)=5Q_y = 10 \sin 30^\circ = 10 \left(\frac{1}{2}\right) = 5 N

  2. Force P (20 N): Angle with +y-axis = 3030^\circ. So, angle with +x-axis = 9030=6090^\circ - 30^\circ = 60^\circ. Px=20cos60=20(12)=10P_x = 20 \cos 60^\circ = 20 \left(\frac{1}{2}\right) = 10 N Py=20sin60=20(32)=103P_y = 20 \sin 60^\circ = 20 \left(\frac{\sqrt{3}}{2}\right) = 10\sqrt{3} N

  3. Force T (15 N): Angle with -x-axis (xx') = 6060^\circ. So, angle with +x-axis = 18060=120180^\circ - 60^\circ = 120^\circ. Tx=15cos120=15(12)=7.5T_x = 15 \cos 120^\circ = 15 \left(-\frac{1}{2}\right) = -7.5 N Ty=15sin120=15(32)=7.53T_y = 15 \sin 120^\circ = 15 \left(\frac{\sqrt{3}}{2}\right) = 7.5\sqrt{3} N

  4. Force S (15 N): Angle with -x-axis (xx') = 4545^\circ (in the third quadrant). So, angle with +x-axis = 180+45=225180^\circ + 45^\circ = 225^\circ. Sx=15cos225=15(12)=152S_x = 15 \cos 225^\circ = 15 \left(-\frac{1}{\sqrt{2}}\right) = -\frac{15}{\sqrt{2}} N Sy=15sin225=15(12)=152S_y = 15 \sin 225^\circ = 15 \left(-\frac{1}{\sqrt{2}}\right) = -\frac{15}{\sqrt{2}} N

  5. Force R (20 N): Angle with +x-axis = 4545^\circ (in the fourth quadrant). So, angle with +x-axis = 36045=315360^\circ - 45^\circ = 315^\circ. Rx=20cos315=20(12)=202R_x = 20 \cos 315^\circ = 20 \left(\frac{1}{\sqrt{2}}\right) = \frac{20}{\sqrt{2}} N Ry=20sin315=20(12)=202R_y = 20 \sin 315^\circ = 20 \left(-\frac{1}{\sqrt{2}}\right) = -\frac{20}{\sqrt{2}} N

Now, sum the x-components to find FxF_x: Fx=Qx+Px+Tx+Sx+RxF_x = Q_x + P_x + T_x + S_x + R_x Fx=53+107.5152+202F_x = 5\sqrt{3} + 10 - 7.5 - \frac{15}{\sqrt{2}} + \frac{20}{\sqrt{2}} Fx=(107.5)+53+(20152)F_x = (10 - 7.5) + 5\sqrt{3} + \left(\frac{20 - 15}{\sqrt{2}}\right) Fx=2.5+53+52F_x = 2.5 + 5\sqrt{3} + \frac{5}{\sqrt{2}} Fx=2.5+53+522F_x = 2.5 + 5\sqrt{3} + \frac{5\sqrt{2}}{2} N

Now, sum the y-components to find FyF_y: Fy=Qy+Py+Ty+Sy+RyF_y = Q_y + P_y + T_y + S_y + R_y Fy=5+103+7.53152202F_y = 5 + 10\sqrt{3} + 7.5\sqrt{3} - \frac{15}{\sqrt{2}} - \frac{20}{\sqrt{2}} Fy=5+(10+7.5)3(15+202)F_y = 5 + (10 + 7.5)\sqrt{3} - \left(\frac{15 + 20}{\sqrt{2}}\right) Fy=5+17.53352F_y = 5 + 17.5\sqrt{3} - \frac{35}{\sqrt{2}} Fy=5+17.533522F_y = 5 + 17.5\sqrt{3} - \frac{35\sqrt{2}}{2} N

The resultant force is FR=Fxi^+Fyj^\vec{F_R} = F_x \hat{i} + F_y \hat{j}. The magnitude of the resultant force is FR=Fx2+Fy2F_R = \sqrt{F_x^2 + F_y^2}.

Substituting the approximate values: 21.414\sqrt{2} \approx 1.414, 31.732\sqrt{3} \approx 1.732 Fx=2.5+5(1.732)+2.5(1.414)=2.5+8.66+3.535=14.695F_x = 2.5 + 5(1.732) + 2.5(1.414) = 2.5 + 8.66 + 3.535 = 14.695 N Fy=5+17.5(1.732)17.5(1.414)=5+30.3124.745=5+5.565=10.565F_y = 5 + 17.5(1.732) - 17.5(1.414) = 5 + 30.31 - 24.745 = 5 + 5.565 = 10.565 N

FR=(14.695)2+(10.565)2=216.09+111.62=327.7118.10F_R = \sqrt{(14.695)^2 + (10.565)^2} = \sqrt{216.09 + 111.62} = \sqrt{327.71} \approx 18.10 N

Answer

No options are provided in the question. The calculated resultant force components are Fx=2.5+53+522 N and Fy=5+17.533522 NF_x = 2.5 + 5\sqrt{3} + \frac{5\sqrt{2}}{2} \text{ N and } F_y = 5 + 17.5\sqrt{3} - \frac{35\sqrt{2}}{2} \text{ N}. The magnitude is approximately 18.10 N18.10 \text{ N}.

Explanation

Solution

The problem requires finding the resultant force of multiple forces acting at a point. This is achieved by:

  1. Identifying each force's magnitude and its angle with respect to a common reference axis (usually the positive x-axis).
  2. Resolving each force into its perpendicular components along the x-axis and y-axis using trigonometry (Fx=FcosθF_x = F \cos\theta, Fy=FsinθF_y = F \sin\theta).
  3. Summing all x-components to get the net x-component (Fx=FixF_x = \sum F_{ix}).
  4. Summing all y-components to get the net y-component (Fy=FiyF_y = \sum F_{iy}).
  5. Calculating the magnitude of the resultant force using the Pythagorean theorem (FR=Fx2+Fy2F_R = \sqrt{F_x^2 + F_y^2}).