Solveeit Logo

Question

Question: A system of masses is located at the vertices of a regular hexagon. The origin (0,0) is at the cente...

A system of masses is located at the vertices of a regular hexagon. The origin (0,0) is at the center of the hexagon. The dashed lines represent the x and y axes. The distances from the center to each vertex are equal to 'l'. The masses and their locations are as follows:

  • Mass 'm' is at (0, l).
  • Mass '2m' is at (l32,l2)(\frac{l\sqrt{3}}{2}, \frac{l}{2}).
  • Mass '3m' is at (l32,l2)(\frac{l\sqrt{3}}{2}, -\frac{l}{2}).
  • Mass '4m' is at (0, -l).
  • Mass '5m' is at (l32,l2)(-\frac{l\sqrt{3}}{2}, -\frac{l}{2}).
  • Mass '6m' is at (l32,l2)(-\frac{l\sqrt{3}}{2}, \frac{l}{2}).

Find the coordinates of the center of mass of this system.

Answer

The center of mass is at (l37,l7)\left(-\frac{l\sqrt{3}}{7}, -\frac{l}{7}\right).

Explanation

Solution

The total mass is M=m+2m+3m+4m+5m+6m=21mM = m + 2m + 3m + 4m + 5m + 6m = 21m.

The x-coordinate of the center of mass is: Xcm=1MmixiX_{cm} = \frac{1}{M} \sum m_i x_i Xcm=121m(m(0)+2m(l32)+3m(l32)+4m(0)+5m(l32)+6m(l32))X_{cm} = \frac{1}{21m} \left( m(0) + 2m(\frac{l\sqrt{3}}{2}) + 3m(\frac{l\sqrt{3}}{2}) + 4m(0) + 5m(-\frac{l\sqrt{3}}{2}) + 6m(-\frac{l\sqrt{3}}{2}) \right) Xcm=121m(ml3+3ml325ml323ml3)X_{cm} = \frac{1}{21m} \left( ml\sqrt{3} + \frac{3ml\sqrt{3}}{2} - \frac{5ml\sqrt{3}}{2} - 3ml\sqrt{3} \right) Xcm=ml321m(1+32523)=l321(2+3562)=l321(62)=l321(3)=l37X_{cm} = \frac{ml\sqrt{3}}{21m} \left( 1 + \frac{3}{2} - \frac{5}{2} - 3 \right) = \frac{l\sqrt{3}}{21} \left( \frac{2+3-5-6}{2} \right) = \frac{l\sqrt{3}}{21} \left( \frac{-6}{2} \right) = \frac{l\sqrt{3}}{21}(-3) = -\frac{l\sqrt{3}}{7}

The y-coordinate of the center of mass is: Ycm=1MmiyiY_{cm} = \frac{1}{M} \sum m_i y_i Ycm=121m(m(l)+2m(l2)+3m(l2)+4m(l)+5m(l2)+6m(l2))Y_{cm} = \frac{1}{21m} \left( m(l) + 2m(\frac{l}{2}) + 3m(-\frac{l}{2}) + 4m(-l) + 5m(-\frac{l}{2}) + 6m(\frac{l}{2}) \right) Ycm=121m(ml+ml3ml24ml5ml2+3ml)Y_{cm} = \frac{1}{21m} \left( ml + ml - \frac{3ml}{2} - 4ml - \frac{5ml}{2} + 3ml \right) Ycm=ml21m(1+132452+3)=l21(23+524+3)=l21(244+3)=l21(3)=l7Y_{cm} = \frac{ml}{21m} \left( 1 + 1 - \frac{3}{2} - 4 - \frac{5}{2} + 3 \right) = \frac{l}{21} \left( 2 - \frac{3+5}{2} - 4 + 3 \right) = \frac{l}{21} \left( 2 - 4 - 4 + 3 \right) = \frac{l}{21} (-3) = -\frac{l}{7}

Thus, the center of mass is at (l37,l7)\left(-\frac{l\sqrt{3}}{7}, -\frac{l}{7}\right).