Solveeit Logo

Question

Question: Fig.2 shows the curve y = x³ +1. Find the area under the curve shown by the shaded region....

Fig.2 shows the curve y = x³ +1. Find the area under the curve shown by the shaded region.

A

54\frac{5}{4} sq units

B

17764\frac{177}{64} sq units

C

8164\frac{81}{64} sq units

D

144 sq units

Answer

17764\frac{177}{64} sq units

Explanation

Solution

The shaded region represents the area under the curve y=x3+1y = x^3 + 1 from x=0x = 0 to x=1.5x = 1.5. To find this area, we need to evaluate the definite integral of the function y=x3+1y = x^3 + 1 with respect to xx from the lower limit 00 to the upper limit 1.51.5.

The area AA is given by:

A=01.5(x3+1)dxA = \int_{0}^{1.5} (x^3 + 1) dx

First, find the indefinite integral:

(x3+1)dx=x3+13+1+x+C=x44+x+C\int (x^3 + 1) dx = \frac{x^{3+1}}{3+1} + x + C = \frac{x^4}{4} + x + C

Now, evaluate the definite integral using the limits:

A=[x44+x]01.5A = \left[ \frac{x^4}{4} + x \right]_{0}^{1.5}

Substitute the upper limit (x=1.5x = 1.5) and the lower limit (x=0x = 0):

A=((1.5)44+1.5)((0)44+0)A = \left( \frac{(1.5)^4}{4} + 1.5 \right) - \left( \frac{(0)^4}{4} + 0 \right)

A=(1.5)44+1.5A = \frac{(1.5)^4}{4} + 1.5

Converting 1.51.5 to a fraction: 1.5=321.5 = \frac{3}{2}.

A=(32)44+32=34244+32=81164+32=8116×4+32=8164+32A = \frac{\left(\frac{3}{2}\right)^4}{4} + \frac{3}{2} = \frac{\frac{3^4}{2^4}}{4} + \frac{3}{2} = \frac{\frac{81}{16}}{4} + \frac{3}{2} = \frac{81}{16 \times 4} + \frac{3}{2} = \frac{81}{64} + \frac{3}{2}

To add the fractions, find a common denominator, which is 64:

32=3×322×32=9664\frac{3}{2} = \frac{3 \times 32}{2 \times 32} = \frac{96}{64}

A=8164+9664=81+9664=17764A = \frac{81}{64} + \frac{96}{64} = \frac{81 + 96}{64} = \frac{177}{64}

Therefore, the area under the curve is 17764\frac{177}{64} square units.