Solveeit Logo

Question

Question: Factorise \({{x}^{2}}+5x+6\) into linear factors....

Factorise x2+5x+6{{x}^{2}}+5x+6 into linear factors.

Explanation

Solution

Hint: Use (x+a)(x+b)=x2+(a+b)x+ab\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab or factorise using the method of completing the square or use quadratic formula [x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}] and factor theorem [if f(a)=0f(a)=0 then xax-a is the factor of f(x)].

Complete step-by-step solution -
Let x2+5x+6=(x+a)(x+b){{x}^{2}}+5x+6=\left( x+a \right)\left( x+b \right)
Using (x+a)(x+b)=x2+(a+b)x+ab\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab we get
x2+5x+6=x2+(a+b)x+ab{{x}^{2}}+5x+6={{x}^{2}}+\left( a+b \right)x+ab
Comparing coefficients of x, we get
a+b=5 (i)a+b=5\text{ (i)}
Comparing constant terms, we get
ab=6 (ii)ab=6\text{ (ii)}
We can factorise 6 in following ways
6=6×16=6\times 1 or 6=3×26=3\times 2
If a = 6 and b = 1 then we have a+b=75a+b=7\ne 5
If a = 3 and b = 2 then we have a+b=3+2=5a+b=3+2=5
Hence, we get a = 3 and b = 2
x2+5x+6=(x+3)(x+2)\Rightarrow {{x}^{2}}+5x+6=\left( x+3 \right)\left( x+2 \right)
Sometimes it is not possible to factorise by using hit and trial method as above. In those cases, we factorise using the method of completing the square.
In this method we use the following identities to factorise
[i] x2+2ax+a2=(x+a)2{{x}^{2}}+2ax+{{a}^{2}}={{\left( x+a \right)}^{2}}
[ii] x22ax+a2=(xa)2{{x}^{2}}-2ax+{{a}^{2}}={{\left( x-a \right)}^{2}}
[iii] a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right).
Step 1: Make the coefficient of leading term as 1
Here the leading term has a coefficient of the leading term is already one. So, we proceed to step 2.
Step 2: Write the middle term in the form of 2ax.
x2+5x+6=x2+2×52×x+6{{x}^{2}}+5x+6={{x}^{2}}+2\times \dfrac{5}{2}\times x+6
Here the middle term 5x has been written in form of 2ax with a = 52\dfrac{5}{2}
Step 3: Add and Subtract a2{{a}^{2}}
x2+5x+6=x2+2×52x+6+(52)2(52)2\Rightarrow {{x}^{2}}+5x+6={{x}^{2}}+2\times \dfrac{5}{2}x+6+{{\left( \dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}
Step 4: Use x2+2ax+a2=(x+a)2{{x}^{2}}+2ax+{{a}^{2}}={{\left( x+a \right)}^{2}} or x22ax+a2=(xa)2{{x}^{2}}-2ax+{{a}^{2}}={{\left( x-a \right)}^{2}} whichever is applicable
x2+2×52x+(52)2(52)2+6=(x+52)2(52)2+6{{x}^{2}}+2\times \dfrac{5}{2}x+{{\left( \dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}+6 using x2+2ax+a2=(x+a)2{{x}^{2}}+2ax+{{a}^{2}}={{\left( x+a \right)}^{2}}
x2+5x+6=(x+52)2(52)2+6\Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}+6
Simplifying we get
x2+5x+6=(x+52)2254+6 x2+5x+6=(x+52)2256×44 x2+5x+6=(x+52)225244 x2+5x+6=(x+52)214 \begin{aligned} & \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{25}{4}+6 \\\ & \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{25-6\times 4}{4} \\\ & \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{25-24}{4} \\\ & \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{1}{4} \\\ \end{aligned}
Step 5: Write the constant term in the form of b2{{b}^{2}}
x2+5x+6=(x+52)214=(x+52)2(12)2\Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{1}{4}={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}}
Step 6: If the resultant expression is of form a2+b2{{a}^{2}}+{{b}^{2}}then the given expression cannot be factorised.
If it is of the form a2b2{{a}^{2}}-{{b}^{2}} then use a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right).
Here the resultant expression is of the form of a2b2{{a}^{2}}-{{b}^{2}} where a=(x+52)a=\left( x+\dfrac{5}{2} \right) and b =12b\text{ }=\dfrac{1}{2}
Using a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) we get
x2+5x+6=(x+52)2(12)2=(x+52+12)(x+5212){{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}}=\left( x+\dfrac{5}{2}+\dfrac{1}{2} \right)\left( x+\dfrac{5}{2}-\dfrac{1}{2} \right)
Simplifying we get

x2+5x+6=(x+52+12)(x+5212)=(x+5+12)(x+512) x2+5x+6=(x+62)(x+42)=(x+3)(x+2) \begin{aligned} & {{x}^{2}}+5x+6=\left( x+\dfrac{5}{2}+\dfrac{1}{2} \right)\left( x+\dfrac{5}{2}-\dfrac{1}{2} \right)=\left( x+\dfrac{5+1}{2} \right)\left( x+\dfrac{5-1}{2} \right) \\\ & \Rightarrow {{x}^{2}}+5x+6=\left( x+\dfrac{6}{2} \right)\left( x+\dfrac{4}{2} \right)=\left( x+3 \right)\left( x+2 \right) \\\ \end{aligned}
Hence x2+5x+6=(x+3)(x+2){{x}^{2}}+5x+6=\left( x+3 \right)\left( x+2 \right)

Note: Quadratic formula: The roots of the quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 are b+b24ac2a and bb24ac2a\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}\text{ and }\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}.
We can factorise quadratic expressions using quadratic formulas also.
If r1{{r}_{1}} and r2{{r}_{2}} are the roots of quadratic expression(found using quadratic formula) then the expression = a(xr1)(xr2)a\left( x-{{r}_{1}} \right)\left( x-{{r}_{2}} \right) where a is the leading coefficient of the quadratic expression.
Here a = 1, b = 5 and c = 6
We know from quadratic formula r1=b+b24ac2a{{r}_{1}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} and r2=bb24ac2a{{r}_{2}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}
Substituting the values of a, b and c in the expression for r1{{r}_{1}} and r2{{r}_{2}} we get
r1=5+524×1×62×1{{r}_{1}}=\dfrac{-5+\sqrt{{{5}^{2}}-4\times 1\times 6}}{2\times 1} and r2=5524×1×62×1{{r}_{2}}=\dfrac{-5-\sqrt{{{5}^{2}}-4\times 1\times 6}}{2\times 1}
r1=2 and r2=3\Rightarrow {{r}_{1}}=-2\text{ and }{{r}_{2}}=-3
Hence x2+5x+6=(x(2))(x(3)){{x}^{2}}+5x+6=\left( x-\left( -2 \right) \right)\left( x-\left( -3 \right) \right)
x2+5x+6=(x+2)(x+3)\Rightarrow {{x}^{2}}+5x+6=\left( x+2 \right)\left( x+3 \right)