Solveeit Logo

Question

Question: Factorise the following algebraic expression: \({{x}^{4}}+2{{x}^{2}}+9\) [a] \(\left( {{x}^{2}}-...

Factorise the following algebraic expression:
x4+2x2+9{{x}^{4}}+2{{x}^{2}}+9
[a] (x22x+3)(x2+2x+3)\left( {{x}^{2}}-2x+3 \right)\left( {{x}^{2}}+2x+3 \right)
[b] (x2+4)(x23)\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}-3 \right)
[c] The expression cannot be factorised.
[d] (x+3)(x2)\left( x+3 \right)\left( x-2 \right)

Explanation

Solution

Hint:Add and subtract 6x26{{x}^{2}} to the expression. Use the formula a2+2ab+b2=(a+b)2{{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}} followed by the use of the formula a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right). Hence factorise the given expression.

Complete step-by-step answer:
Before solving the question, we need to know the meaning of factorisation. Consider two algebraic expressions a2b2{{a}^{2}}-{{b}^{2}} and (a+b)(ab)\left( a+b \right)\left( a-b \right). Let us simplify the latter expression. Applying distributive property, we get (a+b)(ab)=(a+b)a(a+b)b\left( a+b \right)\left( a-b \right)=\left( a+b \right)a-\left( a+b \right)b
Applying distributive property again we get
(a+b)(ab)=a2+ab[ab+b2]\left( a+b \right)\left( a-b \right)={{a}^{2}}+ab-\left[ ab+{{b}^{2}} \right]
Simplifying, we get
(a+b)(ab)=a2+ababb2 =a2b2 \begin{aligned} & \left( a+b \right)\left( a-b \right)={{a}^{2}}+ab-ab-{{b}^{2}} \\\ & ={{a}^{2}}-{{b}^{2}} \\\ \end{aligned}
Hence the two expressions are equal.
The expression (a+b)(ab)\left( a+b \right)\left( a-b \right)is said to be factorised form of a2b2{{a}^{2}}-{{b}^{2}}. When factorising an expression, we make use of algebraic identities like a2+2ab+b2=(a+b)2{{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}},a22ab+b2=(ab)2{{a}^{2}}-2ab+{{b}^{2}}={{\left( a-b \right)}^{2}},a3+b3=(a+b)(a2ab+b2){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right), etc. In this question, we will make use of the identities a2+2ab+b2=(a+b)2{{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}} and a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) to factorise the given expression
Step 1: Add and subtract 6x26{{x}^{2}}
We have x4+2x2+9=x4+6x2+96x2+2x2{{x}^{4}}+2{{x}^{2}}+9={{x}^{4}}+6{{x}^{2}}+9-6{{x}^{2}}+2{{x}^{2}}
Step2: Use (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}
Put a=x2a={{x}^{2}} and b=3b=3, we get
(x2+3)2=x4+6x2+9{{\left( {{x}^{2}}+3 \right)}^{2}}={{x}^{4}}+6{{x}^{2}}+9
Hence, we have
x4+2x2+9=(x2+3)24x2{{x}^{4}}+2{{x}^{2}}+9={{\left( {{x}^{2}}+3 \right)}^{2}}-4{{x}^{2}}
Now we will write the above expression in the form of a2b2{{a}^{2}}-{{b}^{2}}
We have
(x2+3)24x2=(x2+3)2(2x)2{{\left( {{x}^{2}}+3 \right)}^{2}}-4{{x}^{2}}={{\left( {{x}^{2}}+3 \right)}^{2}}-{{\left( 2x \right)}^{2}}
Hence, we have
x4+2x2+9=(x2+3)2(2x)2{{x}^{4}}+2{{x}^{2}}+9={{\left( {{x}^{2}}+3 \right)}^{2}}-{{\left( 2x \right)}^{2}}
Step 3: Factorise the expression using (a2b2)=(a+b)(ab)\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)
We know that a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right). Using the above formula, we get
(x2+3)24x2=(x2+32x)(x2+3+2x)=(x22x+3)(x2+2x+3){{\left( {{x}^{2}}+3 \right)}^{2}}-4{{x}^{2}}=\left( {{x}^{2}}+3-2x \right)\left( {{x}^{2}}+3+2x \right)=\left( {{x}^{2}}-2x+3 \right)\left( {{x}^{2}}+2x+3 \right) which is in factorised form.
Hence, we have
x4+2x2+9=(x22x+3)(x2+2x+3){{x}^{4}}+2{{x}^{2}}+9=\left( {{x}^{2}}-2x+3 \right)\left( {{x}^{2}}+2x+3 \right)
Hence option [a] is correct.

Note: [1] In step 2 we need to combine x4+6x2+9{{x}^{4}}+6{{x}^{2}}+9 to get (x2+3)2{{\left( {{x}^{2}}+3 \right)}^{2}} and not x46x2+9{{x}^{4}}-6{{x}^{2}}+9 to get (x23)2{{\left( {{x}^{2}}-3 \right)}^{2}} because the former leads to an expression of the form a2b2{{a}^{2}}-{{b}^{2}} whereas the latter leads to an expression of the form a2+b2{{a}^{2}}+{{b}^{2}}. a2b2{{a}^{2}}-{{b}^{2}} can be factorised whereas a2+b2{{a}^{2}}+{{b}^{2}}cannot.