Question
Mathematics Question on What is Factorisation?
Factorise
- a4−b4
- p4−81
- x4−(y+z)4
- x4−(x−z)4
- a4−2a2b2+b4
Answer
(i) a4−b4=(a2)2−(b2)2
= (a2−b2)(a2+b2))
= (a−b)(a+b)(a2+b2)
(ii) p4−81=(p2)2−(9)2
= (p2−9)(p2+9)
= [(p)2−(3)2](p2+9)
= (p−3)(p+3)(p2+9)
(iii) x4−(y+z)4=(x2)2−[(y+z)2]2
= [x2−(y+z)2][x2+(y+z)2]
= [x−(y+z)][x+(y+z)][x2+(y+z)2]
= (x−y−z)(x+y+z)[x2+(y+z)2]
(iv) x4−(x−z)4=(x2)2−[(x−z)2]2
= [x2−(x−z)2][x2+(x−z)2]
= [x−(x−z)][x+(x−z)][x2+(x−z)2]
= z(2x−z)[x2+x2−2xz+z2]
= z(2x−z)(2x2−2xz+z2)
(v) a4−2a2b2+b4=(a2)2−2(a2)(b2)+(b2)2
= (a2−b2)2
= [(a−b)(a+b)]2
= (a−b)2(a+b)2