Solveeit Logo

Question

Question: Face centred cubic crystal lattice of copper has density of \(8.996\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}...

Face centred cubic crystal lattice of copper has density of 8.996  gcm38.996\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}. Calculate the volume of the unit cell.
Given molar mass of copper is 63.5  gmol163.5\;{\rm{g}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}} and Avogadro number NA{N_A} is 6.022×1023  mol16.022 \times {10^{23}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}.

Explanation

Solution

An unit cell that possesses atoms at the centre of all faces of the cube and at all the corners of the crystal lattice is termed as face centred unit cell.

Complete answer:
To calculate the volume of unit cell, we first derive the formula, that is, V=Z×Atomic  massNA×dV = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times d}}, then we substitute all the given values to calculate the volume of unit cell.
We know that density is the ratio of mass and volume. Similarly, density of a unit cell can be calculated as follows:

Density  of  unit  cell(d)=Mass  of  unit  cell(M)Volume  of  unit  cell(V)\d=MV\begin{array}{c}{\rm{Density}}\;{\rm{of}}\;{\rm{unit}}\;{\rm{cell}}\left( d \right) = \dfrac{{{\rm{Mass}}\;{\rm{of}}\;{\rm{unit}}\;{\rm{cell}}\left( M \right)}}{{{\rm{Volume}}\;{\rm{of}}\;{\rm{unit}}\;{\rm{cell}}\left( V \right)}}\\\d = \dfrac{M}{V}\end{array} …… (1)

Now, we take Z as the number of atoms in the unit cell and m is the mass of each atom in the unit cell. Then, mass of atoms in the unit cell would be product of number of atoms and mass of each atom, that is,
M=Z×mM = Z \times m …… (2)
And we know that mass of each atom is equal to m=Atomic  massAvogadros  number(NA)m = \dfrac{{{\rm{Atomic}}\;{\rm{mass}}}}{{{\rm{Avogadro's}}\;{\rm{number}}\left( {{N_A}} \right)}}.

Now, we substitute the value of m in equation (2).

M=Z×Atomic  massNAM = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A}}}

Now, we substitute the value of M in equation (1). So, equation (1) becomes,

d=Z×Atomic  massNA×Vd = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times V}} …… (3)

Now, we have to find the number of atoms of the unit cell.
In face centred cubic unit cell,

(i) 8  corner  atoms×18  atom  per  unit  cell=8×18=1  atom8\;{\rm{corner}}\;{\rm{atoms}} \times \dfrac{1}{8}\;{\rm{atom}}\;{\rm{per}}\;{\rm{unit}}\;{\rm{cell}} = {\rm{8}} \times \dfrac{1}{8} = 1\;{\rm{atom}}
(ii) 6  face  centred  atom×12  atom  per  unit  cell=6×12=3  atoms6\;{\rm{face}}\;{\rm{centred}}\;{\rm{atom}} \times \dfrac{1}{2}\;{\rm{atom}}\;{\rm{per}}\;{\rm{unit}}\;{\rm{cell = 6}} \times \dfrac{1}{2} = 3\;{\rm{atoms}}

So, In FCC unit cells, the number of atoms is 4.

Now, we rearrange equation (3) to calculate the value of V.

V=Z×Atomic  massNA×dV = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times d}} ……. (4)

Now, we substitute all the values in equation (3). Number of atoms (Z) is equal to 4, density is equal to 8.996  gcm38.996\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}, NA{N_A} is 6.022×10236.022 \times {10^{23}} and atomic mass of copper is 63.5  gmol163.5\;{\rm{g}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}.

V=Z×Atomic  massNA×d =4×63.5  gmol16.022×1023  mol1×8.996  gcm3 =25454.17×1023  cm3 =4.7×1023  cm3\begin{array}{c}V = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times d}}\\\ = \dfrac{{4 \times 63.5\;{\rm{g}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}}}{{6.022 \times {{10}^{23}}\;{\rm{mo}}{{\rm{l}}^{ - 1}} \times 8.996\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}}}\\\ = \dfrac{{254}}{{54.17 \times {{10}^{23}}}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\\\ = 4.7 \times {10^{ - 23}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\end{array}

Hence, volume of unit cell is 4.7×1023  cm34.7 \times {10^{ - 23}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}.

Note: Students might confuse the number of atoms of different unit cells. In a cubic unit cell the number of atoms is only one, in the body centered cubic unit the number of atoms is 2 and in the face centered cubic unit, the number of atoms is four.