Solveeit Logo

Question

Mathematics Question on limits and derivatives

fA+B+C=, then tan⁡(A2)tan⁡(B2)+tan⁡(B2)tan⁡(C2)+tan⁡(C2)tan⁡(A2) is equal to

A

(A) π/6

B

(B) 3

C

(C) 2

D

(D) 1

Answer

(D) 1

Explanation

Solution

Explanation:
Given that, A+B+C=π∴tan⁡A2tan⁡B2+tan⁡B2tan⁡C2+tan⁡C2tan⁡A2⇒tan⁡B2(tan⁡A2+tan⁡C2)+tan⁡C2tan⁡A2⇒tan⁡B2(sin⁡A2cos⁡C2+sin⁡C2cos⁡A2cos⁡A2cos⁡C2)+sin⁡C2sin⁡A2cos⁡C2cos⁡A2cos⁡A2cos⁡C2C2sin⁡A2⇒tan⁡(B2){sin⁡(A+C2)}+sin⁡C22⇒sin⁡(B/2)+sin⁡(C/2)sin⁡(A/2)cos⁡(A/2)cos⁡(C/2)⇒cos⁡(A+C)/2+sin⁡(C/2)sin⁡(A/2)cos⁡(A/2)cos⁡(C/2)⇒cos⁡(A/2)cos⁡(C/2)−sin⁡(A/2)sin⁡(C/2)+sin⁡(C/2)sin⁡(A/2)cos⁡(A/2)cos⁡(C/2)=cos⁡(A/2)⋅cos⁡(C/2)cos⁡(A/2)⋅cos⁡(C/2)=1