Question
Mathematics Question on limits and derivatives
fA+B+C=, then tan(A2)tan(B2)+tan(B2)tan(C2)+tan(C2)tan(A2) is equal to
A
(A) π/6
B
(B) 3
C
(C) 2
D
(D) 1
Answer
(D) 1
Explanation
Solution
Explanation:
Given that, A+B+C=π∴tanA2tanB2+tanB2tanC2+tanC2tanA2⇒tanB2(tanA2+tanC2)+tanC2tanA2⇒tanB2(sinA2cosC2+sinC2cosA2cosA2cosC2)+sinC2sinA2cosC2cosA2cosA2cosC2C2sinA2⇒tan(B2){sin(A+C2)}+sinC22⇒sin(B/2)+sin(C/2)sin(A/2)cos(A/2)cos(C/2)⇒cos(A+C)/2+sin(C/2)sin(A/2)cos(A/2)cos(C/2)⇒cos(A/2)cos(C/2)−sin(A/2)sin(C/2)+sin(C/2)sin(A/2)cos(A/2)cos(C/2)=cos(A/2)⋅cos(C/2)cos(A/2)⋅cos(C/2)=1