Solveeit Logo

Question

Question: f(10) = 5, then value of '$\alpha$' such that f($\alpha$) = 0 (where $\alpha$ > 1). Let all the root...

f(10) = 5, then value of 'α\alpha' such that f(α\alpha) = 0 (where α\alpha > 1). Let all the roots of the equation x1008+a1x1007+a2x1006+...+a1006x21008x+1=0x^{1008} + a_1x^{1007} + a_2x^{1006} + ... + a_{1006}x^2 - 1008x + 1 = 0 are real and positive

then a2a1\frac{a_2}{|a_1|} is

Answer

503.5

Explanation

Solution

Let the given polynomial be P(x)=x1008+a1x1007+a2x1006+...+a1006x21008x+1=0P(x) = x^{1008} + a_1x^{1007} + a_2x^{1006} + ... + a_{1006}x^2 - 1008x + 1 = 0. The degree of the polynomial is n=1008n=1008. Let the roots of the equation be r1,r2,...,r1008r_1, r_2, ..., r_{1008}. We are given that all roots are real and positive.

From Vieta's formulas, for a monic polynomial xn+c1xn1+c2xn2+...+cn1x+cn=0x^n + c_1x^{n-1} + c_2x^{n-2} + ... + c_{n-1}x + c_n = 0:

  1. Sum of roots: i=1nri=c1\sum_{i=1}^n r_i = -c_1
  2. Sum of products of roots taken two at a time: 1i<jnrirj=c2\sum_{1 \le i < j \le n} r_i r_j = c_2
  3. Product of roots: i=1nri=(1)ncn\prod_{i=1}^n r_i = (-1)^n c_n
  4. Sum of products of roots taken n1n-1 at a time: k=1nrirk=(1)n1cn1\sum_{k=1}^n \frac{\prod r_i}{r_k} = (-1)^{n-1} c_{n-1}

Comparing the given polynomial with the general form: The coefficient of x1007x^{1007} is a1a_1. So, c1=a1c_1 = a_1. The coefficient of x1006x^{1006} is a2a_2. So, c2=a2c_2 = a_2. The coefficient of x1x^1 is 1008-1008. So, c1007=1008c_{1007} = -1008. The constant term (coefficient of x0x^0) is 11. So, c1008=1c_{1008} = 1.

Applying Vieta's formulas:

  1. Sum of roots: i=11008ri=a1\sum_{i=1}^{1008} r_i = -a_1
  2. Sum of products of roots taken two at a time: 1i<j1008rirj=a2\sum_{1 \le i < j \le 1008} r_i r_j = a_2
  3. Product of roots: i=11008ri=(1)1008×1=1\prod_{i=1}^{1008} r_i = (-1)^{1008} \times 1 = 1
  4. Sum of products of roots taken 10071007 at a time: k=11008rirk=(1)1007(1008)\sum_{k=1}^{1008} \frac{\prod r_i}{r_k} = (-1)^{1007} (-1008) Since ri=1\prod r_i = 1, this simplifies to k=110081rk=1008\sum_{k=1}^{1008} \frac{1}{r_k} = 1008.

Now, we use the AM-GM inequality. For nn positive real numbers x1,x2,...,xnx_1, x_2, ..., x_n, the AM-GM inequality states: x1+x2+...+xnn(x1x2...xn)1/n\frac{x_1 + x_2 + ... + x_n}{n} \ge (x_1 x_2 ... x_n)^{1/n} Equality holds if and only if x1=x2=...=xnx_1 = x_2 = ... = x_n.

Apply AM-GM to the reciprocals of the roots, 1/r1,1/r2,...,1/r10081/r_1, 1/r_2, ..., 1/r_{1008}: 1r1+1r2+...+1r10081008(1r11r2...1r1008)1/1008\frac{\frac{1}{r_1} + \frac{1}{r_2} + ... + \frac{1}{r_{1008}}}{1008} \ge \left(\frac{1}{r_1} \frac{1}{r_2} ... \frac{1}{r_{1008}}\right)^{1/1008} Substitute the sum of reciprocals and product of roots: 10081008(11)1/1008\frac{1008}{1008} \ge \left(\frac{1}{1}\right)^{1/1008} 111 \ge 1

Since the equality holds in the AM-GM inequality, it implies that all the terms must be equal: 1r1=1r2=...=1r1008\frac{1}{r_1} = \frac{1}{r_2} = ... = \frac{1}{r_{1008}} This means r1=r2=...=r1008r_1 = r_2 = ... = r_{1008}. Since their product is ri=1\prod r_i = 1, we must have ri1008=1r_i^{1008} = 1. As the roots are positive, this implies ri=1r_i = 1 for all i=1,...,1008i=1, ..., 1008.

So, all roots of the polynomial are 1. This means the polynomial must be (x1)1008(x-1)^{1008}. We can expand (x1)1008(x-1)^{1008} using the binomial theorem: (x1)1008=(10080)x1008(1)0+(10081)x1007(1)1+(10082)x1006(1)2+...+(10081007)x1(1)1007+(10081008)x0(1)1008(x-1)^{1008} = \binom{1008}{0}x^{1008}(-1)^0 + \binom{1008}{1}x^{1007}(-1)^1 + \binom{1008}{2}x^{1006}(-1)^2 + ... + \binom{1008}{1007}x^1(-1)^{1007} + \binom{1008}{1008}x^0(-1)^{1008} (x1)1008=x1008(10081)x1007+(10082)x1006...(10081)x+1(x-1)^{1008} = x^{1008} - \binom{1008}{1}x^{1007} + \binom{1008}{2}x^{1006} - ... - \binom{1008}{1}x + 1

Comparing the coefficients with the given polynomial x1008+a1x1007+a2x1006+...1008x+1=0x^{1008} + a_1x^{1007} + a_2x^{1006} + ... - 1008x + 1 = 0:

  1. Coefficient of x1007x^{1007}: a1=(10081)=1008a_1 = -\binom{1008}{1} = -1008.
  2. Coefficient of x1006x^{1006}: a2=(10082)=1008×(10081)2=1008×10072a_2 = \binom{1008}{2} = \frac{1008 \times (1008-1)}{2} = \frac{1008 \times 1007}{2}. (We can also verify the coefficient of xx: (10081007)=(10081)=1008-\binom{1008}{1007} = -\binom{1008}{1} = -1008, which matches the given polynomial).

We need to find the value of a2a1\frac{a_2}{|a_1|}. a1=1008=1008|a_1| = |-1008| = 1008. a2a1=1008×100721008=10072=503.5\frac{a_2}{|a_1|} = \frac{\frac{1008 \times 1007}{2}}{1008} = \frac{1007}{2} = 503.5.

The first part of the question "f(10) = 5, then value of 'α\alpha' such that f(α\alpha) = 0 (where α\alpha > 1)." seems unrelated and incomplete. The number '3' at the end is likely the intended answer for the question asked, but based on the provided polynomial and standard mathematical principles, the calculated answer is 503.5503.5. Assuming the problem statement for the polynomial is exactly as written and standard mathematical rules apply, 503.5503.5 is the correct result.