Solveeit Logo

Question

Question: $f: X \longrightarrow \mathbb{R}, X = \{x \mid 0 < x < 1\}$ is defined as $f(x) = \frac{2x-1}{1-|2x-...

f:XR,X={x0<x<1}f: X \longrightarrow \mathbb{R}, X = \{x \mid 0 < x < 1\} is defined as f(x)=2x112x1f(x) = \frac{2x-1}{1-|2x-1|}. Then

A

f is only injective

B

f is only surjective

C

f is bijective

D

f is neither injective nor surjective

Answer

f is bijective

Explanation

Solution

The function is given by f(x)=2x112x1f(x) = \frac{2x-1}{1-|2x-1|} for xX={x0<x<1}x \in X = \{x \mid 0 < x < 1\}. The domain is X=(0,1)X = (0, 1). The codomain is R\mathbb{R}.

We need to analyze the expression 2x1|2x-1| for x(0,1)x \in (0, 1). The value of 2x12x-1 is negative when 2x1<02x-1 < 0, i.e., 2x<12x < 1, i.e., x<1/2x < 1/2. The value of 2x12x-1 is zero when 2x1=02x-1 = 0, i.e., x=1/2x = 1/2. The value of 2x12x-1 is positive when 2x1>02x-1 > 0, i.e., 2x>12x > 1, i.e., x>1/2x > 1/2.

So, we can define f(x)f(x) piecewise based on the value of xx:

  1. If 0<x<1/20 < x < 1/2, then 2x1<02x-1 < 0, so 2x1=(2x1)=12x|2x-1| = -(2x-1) = 1-2x. f(x)=2x11(12x)=2x111+2x=2x12x=112xf(x) = \frac{2x-1}{1-(1-2x)} = \frac{2x-1}{1-1+2x} = \frac{2x-1}{2x} = 1 - \frac{1}{2x}. For x(0,1/2)x \in (0, 1/2): As x0+x \to 0^+, f(x)1=f(x) \to 1 - \infty = -\infty. As x(1/2)x \to (1/2)^-, f(x)11=0f(x) \to 1 - 1 = 0^-. The range for this interval is (,0)(-\infty, 0).

  2. If x=1/2x = 1/2, then 2x1=02x-1 = 0, so 2x1=0|2x-1| = 0. f(1/2)=2(1/2)112(1/2)1=1110=01=0f(1/2) = \frac{2(1/2)-1}{1-|2(1/2)-1|} = \frac{1-1}{1-0} = \frac{0}{1} = 0.

  3. If 1/2<x<11/2 < x < 1, then 2x1>02x-1 > 0, so 2x1=2x1|2x-1| = 2x-1. f(x)=2x11(2x1)=2x112x+1=2x122x=2x12(1x)f(x) = \frac{2x-1}{1-(2x-1)} = \frac{2x-1}{1-2x+1} = \frac{2x-1}{2-2x} = \frac{2x-1}{2(1-x)}. For x(1/2,1)x \in (1/2, 1): As x(1/2)+x \to (1/2)^+, f(x)0+2(1/2)=0+1=0+f(x) \to \frac{0^+}{2(1/2)^-} = \frac{0^+}{1^-} = 0^+. As x1x \to 1^-, f(x)2(1)12(11)=10+=+f(x) \to \frac{2(1)^--1}{2(1-1^-)} = \frac{1^-}{0^+} = +\infty. The range for this interval is (0,+)(0, +\infty).

The total range of f(x)f(x) for x(0,1)x \in (0, 1) is the union of the ranges from these cases: (,0){0}(0,+)=R(-\infty, 0) \cup \{0\} \cup (0, +\infty) = \mathbb{R}. Since the range of ff is R\mathbb{R}, which is equal to the codomain, the function ff is surjective.

Now, let's check for injectivity. Suppose f(x1)=f(x2)f(x_1) = f(x_2) for x1,x2(0,1)x_1, x_2 \in (0, 1).

If f(x1)=f(x2)=0f(x_1) = f(x_2) = 0, then from the piecewise definition, this only occurs when x1=1/2x_1 = 1/2 and x2=1/2x_2 = 1/2. So x1=x2x_1 = x_2.

If f(x1)=f(x2)<0f(x_1) = f(x_2) < 0, then both x1x_1 and x2x_2 must be in the interval (0,1/2)(0, 1/2), because the function values are negative only in this interval. In this interval, f(x)=112xf(x) = 1 - \frac{1}{2x}. If 112x1=112x21 - \frac{1}{2x_1} = 1 - \frac{1}{2x_2}, then 12x1=12x2-\frac{1}{2x_1} = -\frac{1}{2x_2}, which implies 1x1=1x2\frac{1}{x_1} = \frac{1}{x_2}, and thus x1=x2x_1 = x_2.

If f(x1)=f(x2)>0f(x_1) = f(x_2) > 0, then both x1x_1 and x2x_2 must be in the interval (1/2,1)(1/2, 1), because the function values are positive only in this interval. In this interval, f(x)=2x12(1x)f(x) = \frac{2x-1}{2(1-x)}. If 2x112(1x1)=2x212(1x2)\frac{2x_1-1}{2(1-x_1)} = \frac{2x_2-1}{2(1-x_2)}, then 2x111x1=2x211x2\frac{2x_1-1}{1-x_1} = \frac{2x_2-1}{1-x_2}.

(2x11)(1x2)=(2x21)(1x1)(2x_1-1)(1-x_2) = (2x_2-1)(1-x_1)

2x12x1x21+x2=2x22x1x21+x12x_1 - 2x_1x_2 - 1 + x_2 = 2x_2 - 2x_1x_2 - 1 + x_1

2x1+x2=2x2+x12x_1 + x_2 = 2x_2 + x_1

x1=x2x_1 = x_2.

Since f(x1)=f(x2)f(x_1) = f(x_2) implies x1=x2x_1 = x_2 in all cases, the function ff is injective.

Since ff is both injective and surjective, it is bijective.