Solveeit Logo

Question

Mathematics Question on Continuity

f(x)=1+px1pxx,1x0=2x+1x2,0x1f(x)=\frac{\sqrt{1+px}\,-\,\sqrt{1-px}}{x}, -1\leq x\leq 0=\frac{2x+1}{x-2}, 0 \leq x \leq 1 is continuous in the interval [-1, 1], thenp equals.

A

2

B

12-\frac{1}{2}

C

12\frac{1}{2}

D

1

Answer

12-\frac{1}{2}

Explanation

Solution

limx0f(x)=limx01px1pxx\lim_{x\to0-}f\left(x\right)= \lim _{x\to 0} \frac{\sqrt{ 1 -px} - \sqrt{1 -px}}{x} = limx0(1+px)(1px)x[1+px+1px]=2p1+1=p\lim _{x\to 0} \frac{\left(1 +px\right) -\left(1-px\right)}{x\left[\sqrt{1+px}+\sqrt{1-px}\right]} =\frac{2p}{1+1} =p limx0+f(x)=limx02x+1x2=0+102=12 \lim _{x\to 0+} f\left(x\right) = \lim _{x\to 0} \frac{2x+1}{x-2} =\frac{0+1}{0-2} =\frac{1}{2} Since f(x)f(x) is continuous in [-1, 1] thereforef(x)therefore \, f(x) is continuous at xx = 0 \therefore limx0f(x)\lim_{x\to0-} f(x) exists and f(0)p=12f(0) \, \therefore \, p = - \frac{1}{2}