Solveeit Logo

Question

Question: \(f ( x ) = f ( 2 - x )\) then \(\int _ { 0.5 } ^ { 1.5 } x f ( x ) d x\) equals...

f(x)=f(2x)f ( x ) = f ( 2 - x ) then 0.51.5xf(x)dx\int _ { 0.5 } ^ { 1.5 } x f ( x ) d x equals

A

01f(x)dx\int _ { 0 } ^ { 1 } f ( x ) d x

B

0.51.5f(x)dx\int _ { 0.5 } ^ { 1.5 } f ( x ) d x

C

20.51.5f(x)dx2 \int _ { 0.5 } ^ { 1.5 } f ( x ) d x

D

0

Answer

0.51.5f(x)dx\int _ { 0.5 } ^ { 1.5 } f ( x ) d x

Explanation

Solution

I=0.51.5xf(x)dx=0.51.5(2x)f(2x)dxI = \int _ { 0.5 } ^ { 1.5 } x f ( x ) d x = \int _ { 0.5 } ^ { 1.5 } ( 2 - x ) f ( 2 - x ) d x ,

[abf(x)dx=abf(a+bx)dx]\left[ \because \int _ { a } ^ { b } f ( x ) d x = \int _ { a } ^ { b } f ( a + b - x ) d x \right]

=0.51.5(2x)f(x)dx=20.51.5f(x)dxI= \int _ { 0.5 } ^ { 1.5 } ( 2 - x ) f ( x ) d x = 2 \int _ { 0.5 } ^ { 1.5 } f ( x ) d x - II=0.51.5f(x)dxI = \int _ { 0.5 } ^ { 1.5 } f ( x ) d x.