Solveeit Logo

Question

Mathematics Question on Pair of Linear Equations in Two Variables

f(x)={sin(xx)xxx(2,1) max2x,3[x],|x|<1\1,otherwisef(x) = \begin{cases} \frac{sin(x-|x|)}{x-|x|} & \quad {x \in(-2,-1) } \\\ max{2x,3[|x|]}, & \quad \text{|x|<1}\\\1 & \quad \text{,otherwise} \end{cases} Where [t] denotes greatest integer t. If m is the number of points where f is not continuous and n is the number of points where f is not differentiable, then the ordered pair (m, n) is

A

(3, 3)

B

(2, 4)

C

(2, 3)

D

(3, 4)

Answer

(2, 3)

Explanation

Solution

f(x)={sin(xx)xxx(2,1) max2x,3[x],|x|<1\1,otherwisef(x) = \begin{cases} \frac{sin(x-|x|)}{x-|x|} & \quad {x \in(-2,-1) } \\\ max{2x,3[|x|]}, & \quad \text{|x|<1}\\\1 & \quad \text{,otherwise} \end{cases}

{sin(x+2)x+2x(2,1) 0,x(1,0)]\1,otherwise \begin{cases} \frac{sin(x+2)}{x+2} & \quad {x \in(-2,-1) } \\\ 0, & \quad x \in(-1,0)]\\\1 & \quad \text{,otherwise} \end{cases}

It clearly shows that f(x)f(x) is discontinuous at x=1,x = –1, 11 also non differentiable and at x=0x = 0,

L.H.D

= limh0f(0+h)f(0)h\lim_{h\to0} \frac{f(0+h)-f(0)}{h} = 00

R.H.D

limh0f(0+h)f(0)h=2 \lim_{h\to0} \frac{f(0+h)-f(0)}{h} =2

f(x)f(x) is not differentiable at x=0x = 0

m=2m = 2, n=3n = 3

Hence, the correct option is (C): (2,3)(2, 3)