Solveeit Logo

Question

Question: \(f(x)=(a+2){{x}^{3}}-3a{{x}^{2}}+9ax-1\) Decreases for all real value of \(x\) is (a). \((-\infty...

f(x)=(a+2)x33ax2+9ax1f(x)=(a+2){{x}^{3}}-3a{{x}^{2}}+9ax-1 Decreases for all real value of xx is
(a). (,3)(-\infty ,-3)
(b). (,0)(-\infty ,0)
(c). (3,0)(-3,0)
(d). (3,)(-3,\infty )

Explanation

Solution

Given that f(x) is decreasing, so would take its derivative f(x)0f'(x)\le 0

Complete step by step solution:
Given that:f(x)=(a+2)x33ax2+9ax1f(x)=(a+2){{x}^{3}}-3a{{x}^{2}}+9ax-1
Taking derivative with respect to xx
f(x)=3(a+2)x26ax+9af'(x)=3(a+2){{x}^{2}}-6ax+9a
As given that, f(x)f(x) is decreasing for all real values of xx.
Therefore, f(x)f'(x)
f(x)<0f'(x)<0 for all xRx\in R

 $\begin{aligned}  

& 3(a+2){{x}^{2}}-6x+9a<0 \\
& (a+2){{x}^{2}}-2ax+3a<0 \\
\end{aligned} (a+2)andand4{{a}^{2}}-4\times (a+2)\times 3a<0[because[ becausea{{x}^{2}}+bx+c<0forall for allx\in R][ ] [\Rightarrow a<0]] \begin{aligned}
& \Rightarrow a+2<0and4{{a}^{2}}-4\times (a+2)\times 3a<0 \\
& \Rightarrow a<-2and{{a}^{2}}-3{{a}^{2}}-6a<0 \\
& \Rightarrow a<-2and-2{{a}^{2}}-6a<0 \\
& \Rightarrow a<-2and-2a(a+3)<0 \\
& \\
\end{aligned}Now, Now,\begin{aligned}
& -2a(a+3)<0 \\
& \Rightarrow a(a+3)>0 \\
& \\
\end{aligned} \Rightarrow a<-3orora>0$

a(,3)(0,)  \begin{aligned} & a\in (-\infty ,-3)\cup (0,\infty ) \\\ & \\\ \end{aligned}
a<2a<-2 and 2a(a+3)<0-2a(a+3)<0
Therefore, a<2a<-2 and a(,3)(0,) a(,3) \begin{aligned} & a\in (-\infty ,-3)\cup (0,\infty ) \\\ & \Rightarrow a\in (-\infty ,-3) \\\ \end{aligned}

Hence, f(x)f(x) decreases for all xRx\in R, if all a(,3)a\in (-\infty ,-3) hence, option A is correct.

Option B: (,0)(-\infty ,0) is not valid as since a<3a<-3 or a>0a>0is the solution we received and values of aa don’t lies in (,0)(-\infty ,0)
Option C: (3,0)(-3,0) is not valid since a<3a<-3 or a>0a>0is the solution we received and values of aa don’t lies in (3,0)(-3,0)
Option D: (3,)(-3,\infty ) is not valid since a<3a<-3 or a>0a>0is the solution we received and values of aa don’t lies in (3,)(-3,\infty )

Note: () is known as the open bracket and we can define and assume that R belongs to (-2, 2), then all values between -2 & +2 except -2 & 2.