Solveeit Logo

Question

Mathematics Question on Maxima and Minima

f the maximum value of a, for which the function
fa(x)=tan1 ⁡2x3ax+7fa(x)=\tan^{−1}\ ⁡2x−3ax+7
is non-decreasing in (π6,π6)(−\frac{π}{6},\frac{π}{6}), is a―, then fa(π8)f\overline{a}(\frac{π}{8})
is equal to

A

89π4(9+π2)8-\frac{9π}{4(9+π^2)}

B

84π9(4+π2)8-\frac{4π}{9(4+π^2)}

C

8(1+π29+π2)8(\frac{1+π^2}{9+π^2})

D

8π48-\frac{π}{4}

Answer

89π4(9+π2)8-\frac{9π}{4(9+π^2)}

Explanation

Solution

fa(x)=tan1 2x3ax+7fa(x) = \tan^{-1}\ 2x -3ax+7
because fa(x)fa(x) is non decreasing in (π6,π6)(- \frac{π}{6},\frac{π}{6})
Therefore , fa(x)>=0 f'a(x) >= 0
21+4x23a0⇒ \frac{2}{1+4x^2}-3a≥0
3a21+4x2⇒ 3a ≤ \frac{2}{1+4x^2}
So, amax=23(11+4×π236)a_{max} = \frac{2}{3}(\frac{1}{1+4\times \frac{π^2}{36}})
=69+π2=a= \frac{6}{9+π^2} = \overline{a}
fa(π8)=tan1π43.π8.69+π2+7\therefore fa(\frac{\pi}{8}) = \tan^{-1} \frac{\pi}{4}-3. \frac{\pi}{8} . \frac{6}{9+ \pi^2}+7