Solveeit Logo

Question

Question: f : R → R, where f(x) = <img src="https://cdn.pureessence.tech/canvas_180.png?top_left_x=1305&top_le...

f : R → R, where f(x) = . Complete set of values of 'a' such that f(x) is onto is

A

(-∞, ∞)

B

(-∞, 0)

C

(0, ∞)

D

None

Answer

None

Explanation

Solution

y=x2+ax+1x2+x+1y = \frac { x ^ { 2 } + a x + 1 } { x ^ { 2 } + x + 1 }

⇒ x2(1 − y) + x(a − y) + (1 − y) = 0.

Since x is real

⇒ (a – y)2 – 4(1 – y)2 ≥ 0

⇒ −3y2 + 2y(4 - a) + a2 – 4 ≥ 0 ∀ y ∈ R

(for f(x) to be onto). But this is not possible as the leading coefficient of this quadratic is negative.