Solveeit Logo

Question

Question: f : R →\(\left( 0 , \frac { \pi } { 2 } \right]\)where f(x) = cot<sup>-1</sup> (x<sup>2</sup> + x + ...

f : R →(0,π2]\left( 0 , \frac { \pi } { 2 } \right]where f(x) = cot-1 (x2 + x + a). Complete set of values of 'a' such that f(x) is onto is

A

[34,)\left[ \frac { 3 } { 4 } , \infty \right)

B

[1, ∞)

C

[12,)\left[ \frac { 1 } { 2 } , \infty \right)

D

[14,)\left[ \frac { 1 } { 4 } , \infty \right)

Answer

[14,)\left[ \frac { 1 } { 4 } , \infty \right)

Explanation

Solution

We know that cot-1(x) ∈(0, π/2] ∀ x > 0. Thus x2 + x + a ≥ 0 ∀ x ∈ R

⇒ 1 - 4a ≤ 0 ⇒ a14a \geq \frac { 1 } { 4 }