Solveeit Logo

Question

Question: If \(P = \log_5(\log_5 3)\) and \(3C + 5 - P = 405\) then C is equal to...

If P=log5(log53)P = \log_5(\log_5 3) and 3C+5P=4053C + 5 - P = 405 then C is equal to

A

3

B

4

C

81

Answer

C = (400 + log₅(log₅3)) / 3 ≈ 133.25

Explanation

Solution

We are given P=log5(log53)P = \log_5(\log_5 3) and 3C+5P=4053C + 5 - P = 405. We need to find the value of C.

  1. From the second equation, we can isolate 3C3C:

    3C=4055+P=400+P3C = 405 - 5 + P = 400 + P
  2. Now, divide by 3 to solve for CC:

    C=400+P3C = \frac{400 + P}{3}
  3. Substitute P=log5(log53)P = \log_5(\log_5 3):

    C=400+log5(log53)3C = \frac{400 + \log_5(\log_5 3)}{3}
  4. Approximate the value of log53\log_5 3:

    log53=ln3ln51.09861.60940.6826\log_5 3 = \frac{\ln 3}{\ln 5} \approx \frac{1.0986}{1.6094} \approx 0.6826
  5. Approximate the value of P=log5(0.6826)P = \log_5(0.6826):

    P=log5(0.6826)=ln0.6826ln50.3821.60940.237P = \log_5(0.6826) = \frac{\ln 0.6826}{\ln 5} \approx \frac{-0.382}{1.6094} \approx -0.237
  6. Substitute the approximate value of PP into the equation for CC:

    C4000.2373399.7633133.254C \approx \frac{400 - 0.237}{3} \approx \frac{399.763}{3} \approx 133.254

Therefore, C133.25C \approx 133.25. None of the given options (3, 4, 81) match this computed value.