Solveeit Logo

Question

Question: f \[\overrightarrow a \] and \[\overrightarrow b \] are unit vectors, then angle between \[\overrigh...

f a\overrightarrow a and b\overrightarrow b are unit vectors, then angle between a\overrightarrow a and b\overrightarrow b for 3ab\sqrt 3 \overrightarrow a - \overrightarrow b to be a unit vector is
(a) 60{\rm{60}}^\circ
(b) 90{\rm{90}}^\circ
(c) 45{\rm{45}}^\circ
(d) 30{\rm{30}}^\circ

Explanation

Solution

Here, we will assume the angle between the vectors a\overrightarrow a and b\overrightarrow b to be θ\theta , such that 3ab\sqrt 3 \overrightarrow a - \overrightarrow b is a unit vector. We will square the equation for the magnitude of the third vector. Then, we will use the formula for angle θ\theta between two vectors non-zero vectors uu and vv to simplify the expression and find the required angle between a\overrightarrow a and b\overrightarrow b ,

Formula used:
We will use the formula of the angle θ\theta between two vectors non-zero vectors uu and vv is given by cosθ=uvu×v\cos \theta = \dfrac{{u \cdot v}}{{\left| u \right| \times \left| v \right|}}.

Complete step by step solution:
It is given that the vectors a\overrightarrow a and b\overrightarrow b are unit vectors.
Therefore, we get the magnitude of the two vectors as a=1\left| {\overrightarrow a } \right| = 1 and b=1\left| {\overrightarrow b } \right| = 1.
Let the angle between the vectors a\overrightarrow a and b\overrightarrow b be θ\theta , such that 3ab\sqrt 3 \overrightarrow a - \overrightarrow b is a unit vector.
Therefore, the angle between the two vectors a\overrightarrow a and b\overrightarrow b is given by
cosθ=aba×b\Rightarrow \cos \theta = \dfrac{{\overrightarrow a \cdot \overrightarrow b }}{{\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right|}}
Substituting a=1\left| {\overrightarrow a } \right| = 1 and b=1\left| {\overrightarrow b } \right| = 1 in the formula, we get
cosθ=ab1×1\Rightarrow \cos \theta = \dfrac{{\overrightarrow a \cdot \overrightarrow b }}{{1 \times 1}}
Multiplying the terms in the denominator, we get
cosθ=ab1\Rightarrow \cos \theta = \dfrac{{\overrightarrow a \cdot \overrightarrow b }}{1}
Therefore, we get
cosθ=ab\Rightarrow \cos \theta = \overrightarrow a \cdot \overrightarrow b
Now, the vector 3ab\sqrt 3 \overrightarrow a - \overrightarrow b is a unit vector.
Therefore, we get
3ab=1\left| {\sqrt 3 \overrightarrow a - \overrightarrow b } \right| = 1
Taking the squares of both sides of the equation, we get
(3ab)2=12{\left( {\left| {\sqrt 3 \overrightarrow a - \overrightarrow b } \right|} \right)^2} = {1^2}
The square of the expression 3ab\left| {\sqrt 3 \overrightarrow a - \overrightarrow b } \right| can be written as (3)2(a)2+(b)223(ab){\left( {\sqrt 3 } \right)^2}{\left( {\left| {\overrightarrow a } \right|} \right)^2} + {\left( {\left| {\overrightarrow b } \right|} \right)^2} - 2\sqrt 3 \left( {\overrightarrow a \cdot \overrightarrow b } \right).
Therefore, we get
(3)2(a)2+(b)223(ab)=1\Rightarrow {\left( {\sqrt 3 } \right)^2}{\left( {\left| {\overrightarrow a } \right|} \right)^2} + {\left( {\left| {\overrightarrow b } \right|} \right)^2} - 2\sqrt 3 \left( {\overrightarrow a \cdot \overrightarrow b } \right) = 1
Substituting a=1\left| {\overrightarrow a } \right| = 1 and b=1\left| {\overrightarrow b } \right| = 1 in the equation, we get
(3)2(1)2+(1)223(ab)=1\Rightarrow {\left( {\sqrt 3 } \right)^2}{\left( 1 \right)^2} + {\left( 1 \right)^2} - 2\sqrt 3 \left( {\overrightarrow a \cdot \overrightarrow b } \right) = 1
Applying the exponents on the bases, we get
3(1)+123(ab)=1\Rightarrow 3\left( 1 \right) + 1 - 2\sqrt 3 \left( {\overrightarrow a \cdot \overrightarrow b } \right) = 1
Multiplying the terms in the expression, we get
3+123(ab)=1\Rightarrow 3 + 1 - 2\sqrt 3 \left( {\overrightarrow a \cdot \overrightarrow b } \right) = 1
Simplifying the expression, we get
323(ab)=0\Rightarrow 3 - 2\sqrt 3 \left( {\overrightarrow a \cdot \overrightarrow b } \right) = 0
Substituting ab=cosθ\overrightarrow a \cdot \overrightarrow b = \cos \theta in the equation, we get
323cosθ=0\Rightarrow 3 - 2\sqrt 3 \cos \theta = 0
Rewriting the equation by rearranging the terms, we get
23cosθ=3\Rightarrow 2\sqrt 3 \cos \theta = 3
Dividing both sides of the equation by 232\sqrt 3 , we get
cosθ=323\Rightarrow \cos \theta = \dfrac{3}{{2\sqrt 3 }}
Therefore, we get
cosθ=3×323 cosθ=32\begin{array}{l} \Rightarrow \cos \theta = \dfrac{{\sqrt 3 \times \sqrt 3 }}{{2\sqrt 3 }}\\\ \Rightarrow \cos \theta = \dfrac{{\sqrt 3 }}{2}\end{array}
We know that the cosine of the angle measuring 3030^\circ is 32\dfrac{{\sqrt 3 }}{2}.
Substituting cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2} in the equation, we get
cosθ=cos30\Rightarrow \cos \theta = \cos 30^\circ
Therefore, we get
θ=30\Rightarrow \theta = 30^\circ
Therefore, we get the angle between the vectors a\overrightarrow a and b\overrightarrow b , such that 3ab\sqrt 3 \overrightarrow a - \overrightarrow b is a unit vector as 3030^\circ .

Thus, the correct option is option (d).

Note:
We used the term ‘unit vector’ and ‘magnitude’ in the solution. The magnitude of a vector is the length of the vector. The magnitude of a vector v=xi+yj+zk{\bf{v}} = \overline {x{\bf{i}}} + \overline {y{\bf{j}}} + \overline {z{\bf{k}}} is given by the formula v=x2+y2+z2\left| {\bf{v}} \right| = \sqrt {{x^2} + {y^2} + {z^2}} . A unit vector is a vector whose magnitude is equal to 1. If a vector v=xi+yj+zk{\bf{v}} = \overline {x{\bf{i}}} + \overline {y{\bf{j}}} + \overline {z{\bf{k}}} is a unit vector, then v=1\left| {\bf{v}} \right| = 1.