Solveeit Logo

Question

Question: \( f\left( x \right) = \left\\{ \begin{array}{l} \dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}}\;\;\;...

f\left( x \right) = \left\\{ \begin{array}{l} \dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}}\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;x < \dfrac{\pi }{2}\\\ a\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if }}x = \dfrac{\pi }{2}\\\ \dfrac{{b\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}}\;\;\;\;\;\;\;\;{\rm{if }}x > \dfrac{\pi }{2} \end{array} \right. is continuous at x=π2x = \dfrac{\pi }{2} find aa and bb .

Explanation

Solution

Hint : We know the function is continuous at x=π2x = \dfrac{\pi }{2} then take limit 1sin3x3cos2x\dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}} at x<π2x < \dfrac{\pi }{2} is equal to aa . Then since the function is continuous at x=π2x = \dfrac{\pi }{2} then take the limit aa is equal to limit a b(1sinx)(π2x)2\dfrac{{b\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}} at x>π2x > \dfrac{\pi }{2} .

Complete step-by-step answer :
The given function is f\left( x \right) = \left\\{ \begin{array}{l} \dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}}\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;x < \dfrac{\pi }{2}\\\ a\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if }}x = \dfrac{\pi }{2}\\\ \dfrac{{b\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}}\;\;\;\;\;\;\;\;{\rm{if }}x > \dfrac{\pi }{2} \end{array} \right. .
Also, it is given that the function is continuous at x=π2x = \dfrac{\pi }{2} .
The definition of continuous function:
We say the function is continuous at some point let us say it as aa when limit at xax \to a function is equal to function at point aa that is,
limxaf(x)=f(a)\mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right)
Since, it is given that the function is continuous at x=π2x = \dfrac{\pi }{2} so,

limxπ21sin3x3cos2x=a\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}} = a ........(1)
Now, let us substitute π2\dfrac{\pi }{2} in the function we get,
1sin3π23cos2π2\dfrac{{1 - {{\sin }^3}\dfrac{\pi }{2}}}{{3{{\cos }^2}\dfrac{\pi }{2}}}
Since, we know the value of sinπ2\sin \dfrac{\pi }{2} is 11 and the value for cos(π2)\cos \left( {\dfrac{\pi }{2}} \right) is 00 .
So, now let us substitute sinπ2\sin \dfrac{\pi }{2} value and cos(π2)\cos \left( {\dfrac{\pi }{2}} \right) value in the above equation, we get
113×0=00\dfrac{{1 - 1}}{{3 \times 0}} = \dfrac{0}{0}
Since, the function is 00\dfrac{0}{0} for now let us use L’hospital rule.
L’ Hospital rule says that if limxaf(x)g(x)=00\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0} , then we will take .
So after applying L’Hospital rule in our problem we have,
Now, by chain rule first the derivative for numerator term is,
ddx(1sin3x)=3sin2xcosx\dfrac{d}{{dx}}\left( {1 - {{\sin }^3}x} \right) = - 3{\sin ^2}x\cos x
Also, second the derivative for denominator term is, we get,
ddx(3cos2x)6cosx×(sinx)\dfrac{d}{{dx}}\left( {3{{\cos }^2}x} \right)6\cos x \times \left( { - \sin x} \right)
On substituting in equations (1) we get,
limxπ23sin2xcosx6cosx×(sinx)=a limxπ2sinx2=a 12=a\begin{array}{c} \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - 3{{\sin }^2}x\cos x}}{{6\cos x \times \left( { - \sin x} \right)}} = a\\\ \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\sin x}}{2} = a\\\ \dfrac{1}{2} = a \end{array}
The value for aa is 12\dfrac{1}{2} .

Now we need to find the value for bb .
Using the continuity property we have, since it is given that the function is continuous at x=π2x = \dfrac{\pi }{2} so,
limxπ2b(1sinx)(π2x)2=12\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{b\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}} = \dfrac{1}{2} ...........(2)
Now let us substitute π2\dfrac{\pi }{2} in the function we get,
b(1sinπ2)(π2x)2\dfrac{{b\left( {1 - \sin \dfrac{\pi }{2}} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}}
Since value of sinπ2\sin \dfrac{\pi }{2} is 11 , so now let us substitute sinπ2\sin \dfrac{\pi }{2} value in the above equation, we get,
b(0)0=00\dfrac{{b\left( 0 \right)}}{0} = \dfrac{0}{0}
Since, the function is 00\dfrac{0}{0} for now let us use L’Hospital rule.
L’ Hospital rule says that if limxaf(x)g(x)=00\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0} then we take .
So after applying L’Hospital rule in our problem we have,
The derivative for numerator term is,
ddxb(1sinx)=bcosx\dfrac{d}{{dx}}b\left( {1 - \sin x} \right) = - b\cos x
The derivative for denominator term is, we get,
ddx(π2x)2=2(π2x)(2)\dfrac{d}{{dx}}{\left( {\pi - 2x} \right)^2} = 2\left( {\pi - 2x} \right)\left( { - 2} \right)
On substituting the value in (2) we get,
limxπ2bcosx4(π2x)=00\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - b\cos x}}{{ - 4\left( {\pi - 2x} \right)}} = \dfrac{0}{0}
Let us use L’Hospital rule again we get,
limxπ2bsinx8=12 bsin(π2)8=12 b8=12 b=4\begin{array}{c} \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{b\sin x}}{8} = \dfrac{1}{2}\\\ \dfrac{{b\sin \left( {\dfrac{\pi }{2}} \right)}}{8} = \dfrac{1}{2}\\\ \dfrac{b}{8} = \dfrac{1}{2}\\\ b = 4 \end{array}
The value for bb is 44 .

Note : If the function is continuous at some point we can use limxπ2f(x)\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} f\left( x \right) is equal to f(a)f\left( a \right) . Otherwise we cannot use it. For L’Hospital rule if the denominator term is 00 and numerator term is non zero we cannot use this rule and vice versa.