Solveeit Logo

Question

Mathematics Question on Functions

f(x)=xex1+x2+2cos3x2f\left(x\right) = \frac{x}{e^{x}-1} + \frac{x}{2} + 2 \cos^{3} \frac{x}{2} on R-\left\\{0\right\\} is

A

One one function

B

Bisection

C

Algebraic function

D

Even function

Answer

Even function

Explanation

Solution

Given function
f(x)=xex1+x2+2cos3x2f(x)=\frac{x}{e^{x}-1}+\frac{x}{2}+2 \cos ^{3} \frac{x}{2} on
R0R-\\{0\\}.
f(x)=xex1x2+2cos3(x2)\because f(-x) =\frac{-x}{e^{-x}-1}-\frac{x}{2}+2 \cos ^{3}\left(-\frac{x}{2}\right)
=xex1exx2+2cos3x2=\frac{-x e^{x}}{1-e^{x}}-\frac{x}{2}+2 \cos ^{3} \frac{x}{2}
=xexex1x2+2cos3x2=\frac{x e^{x}}{e^{x}-1}-\frac{x}{2}+2 \cos ^{3} \frac{x}{2}
=x(ex1+1)ex1x2+2cos3x2=\frac{x\left(e^{x}-1+1\right)}{e^{x}-1}-\frac{x}{2}+2 \cos ^{3} \frac{x}{2}
=x+xex1x2+2cos3x2=x+\frac{x}{e^{x}-1}-\frac{x}{2}+2 \cos ^{3} \frac{x}{2}
=xex1+x2+2cos3x2=f(x)=\frac{x}{e^{x}-1}+\frac{x}{2}+2 \cos ^{3} \frac{x}{2}=f(x)
f(x)=f(x),xR0\because f(-x)=f(x), \forall x \in R-\\{0\\}
f(x)\therefore f(x) is an even function.