Solveeit Logo

Question

Question: f f(x) = sin [x]/[x], [x] ¹ 0 = 0, [x] = 0 where [x] denotes the greatest integer less than or equal...

f f(x) = sin [x]/[x], [x] ¹ 0 = 0, [x] = 0 where [x] denotes the greatest integer less than or equal to x; thenlimx0\lim_{x \rightarrow 0}f(x) equals-

A

1

B

0

C

–1

D

None of these

Answer

None of these

Explanation

Solution

[sin[x][x],x[0,1)0,x[0,1) \left\lbrack \begin{matrix} \frac{\sin\lbrack x\rbrack}{\lbrack x\rbrack}, & x \notin \lbrack 0,1) \\ 0, & x \in \lbrack 0,1) \end{matrix} \right.\

RHL limx0+\lim_{x \rightarrow 0^{+}}0 = 0

LHL limx0\lim _ { x \rightarrow 0 ^ { - } } sin[x][x]\frac{\sin\lbrack x\rbrack}{\lbrack x\rbrack}

limh0\lim _ { h \rightarrow 0 } sin[h][h]\frac{\sin\lbrack - h\rbrack}{\lbrack - h\rbrack}= sin[1][1]\frac{\sin\lbrack - 1\rbrack}{\lbrack - 1\rbrack}= sin 1

Limit does not exist.