Question
Question: f f(x) = sin [x]/[x], [x] ¹ 0 = 0, [x] = 0 where [x] denotes the greatest integer less than or equal...
f f(x) = sin [x]/[x], [x] ¹ 0 = 0, [x] = 0 where [x] denotes the greatest integer less than or equal to x; thenlimx→0f(x) equals-
A
1
B
0
C
–1
D
None of these
Answer
None of these
Explanation
Solution
[[x]sin[x],0,x∈/[0,1)x∈[0,1)
RHL limx→0+0 = 0
LHL limx→0− [x]sin[x]
limh→0 [−h]sin[−h]= [−1]sin[−1]= sin 1
Limit does not exist.