Question
Question: f a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> are all positive, then 4a<sub>0</sub> x...
f a0, a1, a2, a3 are all positive, then 4a0 x3 + 3a1 x2 + 2 a2 x + a3 = 0 has at least one root in (–1, 0) if –
A
a0 + a2 = a1 + a3 and 4a0 + 2a2> 3a1 + a3
B
4a0 + 2a2< 3a1 + a3
C
4a0 + 2a2 = 3a1 + a3 and a0 + a2< a1 + a3
D
None of these
Answer
a0 + a2 = a1 + a3 and 4a0 + 2a2> 3a1 + a3
Explanation
Solution
P(x) = 4a0 x3 + 3a1 x2 + 2a2 x + a3 is a polynomial, so it is continuous for all x.
P(x) = 0 has a root in (–1, 0).
P(–1) P(0) < 0 or the area enclosed by the graph of P(x), x-axis and the ordinates at x = – 1, and
x = 0 is zero.
P(0) = a3 > 0, P(– 1) = – 4a0 + 3a1 – 2a2 + a3 < 0 or
4a0 + 2a2 > 3a1 + a3
∫−10P(x) dx = 0 gives a0 + a2 = a1 + a3