Solveeit Logo

Question

Question: \(f ( 2 ) = 4\) \(f^{'}(2) = 1,\) then \(\lim_{x \rightarrow 2}\frac{xf(2) - 2f(x)}{x - 2} =\)...

f(2)=4f ( 2 ) = 4 f(2)=1,f^{'}(2) = 1, then limx2xf(2)2f(x)x2=\lim_{x \rightarrow 2}\frac{xf(2) - 2f(x)}{x - 2} =

A

1

B

2

C

3

D

-2

Answer

2

Explanation

Solution

Given f(2)=4,f(2)=1f(2) = 4,f^{'}(2) = 1

\therefore limx2xf(2)2f(x)x2=limx2xf(2)2f(2)+2f(2)2f(x)x2=\lim_{x \rightarrow 2}\frac{xf(2) - 2f(x)}{x - 2} = \lim_{x \rightarrow 2}\frac{xf(2) - 2f(2) + 2f(2) - 2f(x)}{x - 2} =

limx2(x2)f(2)x2limx22f(x)2f(2)x2\lim_{x \rightarrow 2}\frac{(x - 2)f(2)}{x - 2} - \lim_{x \rightarrow 2}\frac{2f(x) - 2f(2)}{x - 2} = f(2)2limx2f(x)f(2)x2f(2) - 2\lim_{x \rightarrow 2}\frac{f(x) - f(2)}{x - 2}

= f(2)2f(2)=42(1)=42=2f(2) - 2f^{'}(2) = 4 - 2(1) = 4 - 2 = 2

Trick : Applying L-Hospital rule, we get limx2f(2)2f(2)1=2\lim_{x \rightarrow 2}\frac{f(2) - 2f^{'}(2)}{1} = 2.