Question
Question: \(f ( 2 ) = 4\) \(f^{'}(2) = 1,\) then \(\lim_{x \rightarrow 2}\frac{xf(2) - 2f(x)}{x - 2} =\)...
f(2)=4 f′(2)=1, then limx→2x−2xf(2)−2f(x)=
A
1
B
2
C
3
D
-2
Answer
2
Explanation
Solution
Given f(2)=4,f′(2)=1
∴ limx→2x−2xf(2)−2f(x)=limx→2x−2xf(2)−2f(2)+2f(2)−2f(x)=
limx→2x−2(x−2)f(2)−limx→2x−22f(x)−2f(2) = f(2)−2limx→2x−2f(x)−f(2)
= f(2)−2f′(2)=4−2(1)=4−2=2
Trick : Applying L-Hospital rule, we get limx→21f(2)−2f′(2)=2.