Solveeit Logo

Question

Question: $f: [0,1] \rightarrow R$ is a function such that $f'(x)$ is continuous and $\int_0^1 f(x)dx = 0$, if...

f:[0,1]Rf: [0,1] \rightarrow R is a function such that f(x)f'(x) is continuous and 01f(x)dx=0\int_0^1 f(x)dx = 0, if maximum value of f(x)|f'(x)| when x[0,1]x \in [0, 1] is 24, then possible value of 0xf(t)dt|\int_0^x f(t)dt|, x[0,1]x \in [0, 1], is/are:

A

1

B

2

C

3

D

4

Answer

1, 2, 3

Explanation

Solution

Let F(x)=0xf(t)dtF(x) = \int_0^x f(t) dt. We are given that f:[0,1]Rf: [0,1] \rightarrow R is a function such that f(x)f'(x) is continuous on [0,1][0,1]. This implies f(x)f(x) is continuously differentiable, and F(x)F(x) is twice continuously differentiable. By the Fundamental Theorem of Calculus, F(x)=f(x)F'(x) = f(x) and F(x)=f(x)F''(x) = f'(x). We are given 01f(x)dx=0\int_0^1 f(x) dx = 0. This means F(1)=01f(t)dt=0F(1) = \int_0^1 f(t) dt = 0. Also, F(0)=00f(t)dt=0F(0) = \int_0^0 f(t) dt = 0. We are given that the maximum value of f(x)|f'(x)| for x[0,1]x \in [0,1] is 24. So, F(x)24|F''(x)| \le 24 for all x[0,1]x \in [0,1].

We have a function F(x)F(x) defined on [0,1][0,1] such that F(0)=0F(0)=0, F(1)=0F(1)=0, and F(x)24|F''(x)| \le 24. We want to find the possible values of F(x)|F(x)| for x[0,1]x \in [0,1].

Consider the function g(x)=F(x)12x(1x)g(x) = F(x) - 12x(1-x). g(x)=F(x)12(12x)g'(x) = F'(x) - 12(1-2x). g(x)=F(x)12(2)=F(x)+24g''(x) = F''(x) - 12(-2) = F''(x) + 24. Since F(x)24|F''(x)| \le 24, we have F(x)24F''(x) \ge -24. So g(x)=F(x)+2424+24=0g''(x) = F''(x) + 24 \ge -24 + 24 = 0. Since g(x)0g''(x) \ge 0, the function g(x)g(x) is convex on [0,1][0,1]. Also, g(0)=F(0)12(0)(10)=00=0g(0) = F(0) - 12(0)(1-0) = 0 - 0 = 0. And g(1)=F(1)12(1)(11)=00=0g(1) = F(1) - 12(1)(1-1) = 0 - 0 = 0. For a convex function on [0,1][0,1] with g(0)=g(1)=0g(0)=g(1)=0, we must have g(x)0g(x) \le 0 for x[0,1]x \in [0,1]. Thus, F(x)12x(1x)0F(x) - 12x(1-x) \le 0, which implies F(x)12x(1x)F(x) \le 12x(1-x).

Consider the function h(x)=F(x)+12x(1x)h(x) = F(x) + 12x(1-x). h(x)=F(x)+12(12x)h'(x) = F'(x) + 12(1-2x). h(x)=F(x)+12(2)=F(x)24h''(x) = F''(x) + 12(-2) = F''(x) - 24. Since F(x)24|F''(x)| \le 24, we have F(x)24F''(x) \le 24. So h(x)=F(x)242424=0h''(x) = F''(x) - 24 \le 24 - 24 = 0. Since h(x)0h''(x) \le 0, the function h(x)h(x) is concave on [0,1][0,1]. Also, h(0)=F(0)+12(0)(10)=0+0=0h(0) = F(0) + 12(0)(1-0) = 0 + 0 = 0. And h(1)=F(1)+12(1)(11)=0+0=0h(1) = F(1) + 12(1)(1-1) = 0 + 0 = 0. For a concave function on [0,1][0,1] with h(0)=h(1)=0h(0)=h(1)=0, we must have h(x)0h(x) \ge 0 for x[0,1]x \in [0,1]. Thus, F(x)+12x(1x)0F(x) + 12x(1-x) \ge 0, which implies F(x)12x(1x)F(x) \ge -12x(1-x).

Combining the two inequalities, we have 12x(1x)F(x)12x(1x)-12x(1-x) \le F(x) \le 12x(1-x) for all x[0,1]x \in [0,1]. This means F(x)12x(1x)|F(x)| \le 12x(1-x) for all x[0,1]x \in [0,1].

The function p(x)=12x(1x)p(x) = 12x(1-x) is a parabola opening downwards with roots at x=0x=0 and x=1x=1. Its maximum value on [0,1][0,1] occurs at the vertex x=12/(2×12)=1/2x = -12/(2 \times -12) = 1/2. The maximum value is 12(1/2)(11/2)=12(1/2)(1/2)=12/4=312(1/2)(1-1/2) = 12(1/2)(1/2) = 12/4 = 3. So, for any function ff satisfying the given conditions, we have F(x)=0xf(t)dt3|F(x)| = |\int_0^x f(t) dt| \le 3 for all x[0,1]x \in [0,1]. This means that any possible value of 0xf(t)dt|\int_0^x f(t) dt| must be less than or equal to 3.

To check if 3 is a possible value, we need to see if there exists a function ff satisfying the conditions such that F(x)=3|F(x)|=3 for some x[0,1]x \in [0,1]. Consider the function F(x)=12x(1x)F(x) = 12x(1-x). F(0)=0F(0)=0, F(1)=0F(1)=0. F(x)=12(12x)F'(x) = 12(1-2x). Let f(x)=F(x)=12(12x)f(x) = F'(x) = 12(1-2x). 01f(x)dx=0112(12x)dx=12[xx2]01=12[(11)(00)]=0\int_0^1 f(x) dx = \int_0^1 12(1-2x) dx = 12[x-x^2]_0^1 = 12[(1-1)-(0-0)] = 0. This condition is satisfied. f(x)=24f'(x) = -24. f(x)=24|f'(x)| = 24. The maximum value of f(x)|f'(x)| on [0,1][0,1] is indeed 24. So, the function f(x)=12(12x)f(x) = 12(1-2x) satisfies all the given conditions. For this function, F(x)=0x12(12t)dt=12[tt2]0x=12(xx2)=12x(1x)F(x) = \int_0^x 12(1-2t) dt = 12[t-t^2]_0^x = 12(x-x^2) = 12x(1-x). F(x)=12x(1x)=12x(1x)|F(x)| = |12x(1-x)| = 12x(1-x) for x[0,1]x \in [0,1]. The possible values of F(x)|F(x)| for this specific function are the values in the range of 12x(1x)12x(1-x) for x[0,1]x \in [0,1]. The range of 12x(1x)12x(1-x) for x[0,1]x \in [0,1] is [0,3][0, 3]. So, for this specific function, any value in [0,3][0, 3] is a possible value of F(x)|F(x)|.

The question asks for "possible value of 0xf(t)dt|\int_0^x f(t)dt|, x[0,1]x \in [0, 1]". This means a value that F(x)|F(x)| can take for some x[0,1]x \in [0,1] and for some function ff satisfying the conditions. Since we found a function ff for which the values of F(x)|F(x)| cover the interval [0,3][0, 3], any value in [0,3][0, 3] is a possible value.

We check the given options: (1) 1: 1 is in [0,3][0, 3]. Possible. (2) 2: 2 is in [0,3][0, 3]. Possible. (3) 3: 3 is in [0,3][0, 3]. Possible. (4) 4: 4 is not in [0,3][0, 3]. Not possible.

The question asks for "possible value is/are", suggesting there might be multiple correct options. The possible values of 0xf(t)dt|\int_0^x f(t) dt| for x[0,1]x \in [0,1] are the values in the interval [0,3][0, 3]. Options (1), (2), and (3) are all within this interval.