Solveeit Logo

Question

Question: external uniform electric field parallel to x-axis is applied such that net electric field at A is a...

external uniform electric field parallel to x-axis is applied such that net electric field at A is along OA\overline{OA}. The magnitude of net electric field at point A is. (K=14πϵ0)\left(K = \frac{1}{4\pi\epsilon_0}\right)

A

kpr3\frac{kp}{r^3}

B

kpcosθr3\frac{kp\cos\theta}{r^3}

C

3kpr3\frac{3kp}{r^3}

D

3kpcosθr3\frac{3kp\cos\theta}{r^3}

Answer

3kpcosθr3\frac{3kp\cos\theta}{r^3}

Explanation

Solution

The electric field at point A due to a dipole with dipole moment p\vec{p} at the origin is given by Edipole=Kr3[3(pr^)r^p]\vec{E}_{dipole} = \frac{K}{r^3}[3(\vec{p}\cdot\hat{r})\hat{r} - \vec{p}], where r^\hat{r} is the unit vector along OA\overline{OA}.

In this case, the dipole is along the x-axis, so p=pi^\vec{p} = p\hat{i}. The position vector of A is r=r(cosθi^+sinθj^)\vec{r} = r(\cos\theta\hat{i} + \sin\theta\hat{j}), and r^=cosθi^+sinθj^\hat{r} = \cos\theta\hat{i} + \sin\theta\hat{j}.

pr^=(pi^)(cosθi^+sinθj^)=pcosθ\vec{p}\cdot\hat{r} = (p\hat{i})\cdot(\cos\theta\hat{i} + \sin\theta\hat{j}) = p\cos\theta.

Edipole=Kr3[3(pcosθ)(cosθi^+sinθj^)pi^]=Kpr3[3cos2θi^+3sinθcosθj^i^]\vec{E}_{dipole} = \frac{K}{r^3}[3(p\cos\theta)(\cos\theta\hat{i} + \sin\theta\hat{j}) - p\hat{i}] = \frac{Kp}{r^3}[3\cos^2\theta\hat{i} + 3\sin\theta\cos\theta\hat{j} - \hat{i}].

Edipole=Kpr3[(3cos2θ1)i^+3sinθcosθj^]\vec{E}_{dipole} = \frac{Kp}{r^3}[(3\cos^2\theta - 1)\hat{i} + 3\sin\theta\cos\theta\hat{j}].

An external uniform electric field parallel to the x-axis is applied, let it be Eext=E0i^\vec{E}_{ext} = E_0\hat{i}.

The net electric field at A is Enet=Edipole+Eext=Kpr3[(3cos2θ1)i^+3sinθcosθj^]+E0i^\vec{E}_{net} = \vec{E}_{dipole} + \vec{E}_{ext} = \frac{Kp}{r^3}[(3\cos^2\theta - 1)\hat{i} + 3\sin\theta\cos\theta\hat{j}] + E_0\hat{i}.

Enet=(Kpr3(3cos2θ1)+E0)i^+(Kpr3(3sinθcosθ))j^\vec{E}_{net} = \left(\frac{Kp}{r^3}(3\cos^2\theta - 1) + E_0\right)\hat{i} + \left(\frac{Kp}{r^3}(3\sin\theta\cos\theta)\right)\hat{j}.

We are given that the net electric field at A is along OA\overline{OA}, which means it is along the direction of r^=cosθi^+sinθj^\hat{r} = \cos\theta\hat{i} + \sin\theta\hat{j}.

So, Enet=Enetr^=Enet(cosθi^+sinθj^)\vec{E}_{net} = E_{net}\hat{r} = E_{net}(\cos\theta\hat{i} + \sin\theta\hat{j}).

Comparing the components of the two expressions for Enet\vec{E}_{net}:

i-component: Kpr3(3cos2θ1)+E0=Enetcosθ\frac{Kp}{r^3}(3\cos^2\theta - 1) + E_0 = E_{net}\cos\theta

j-component: Kpr3(3sinθcosθ)=Enetsinθ\frac{Kp}{r^3}(3\sin\theta\cos\theta) = E_{net}\sin\theta

From the j-component equation, assuming sinθ0\sin\theta \neq 0, we can divide by sinθ\sin\theta:

Enet=Kpr3(3cosθ)=3Kpcosθr3E_{net} = \frac{Kp}{r^3}(3\cos\theta) = \frac{3Kp\cos\theta}{r^3}.

Now substitute this expression for EnetE_{net} into the i-component equation:

Kpr3(3cos2θ1)+E0=(3Kpcosθr3)cosθ=3Kpcos2θr3\frac{Kp}{r^3}(3\cos^2\theta - 1) + E_0 = \left(\frac{3Kp\cos\theta}{r^3}\right)\cos\theta = \frac{3Kp\cos^2\theta}{r^3}.

E0=3Kpcos2θr3Kpr3(3cos2θ1)=Kpr3(3cos2θ(3cos2θ1))=Kpr3(3cos2θ3cos2θ+1)=Kpr3E_0 = \frac{3Kp\cos^2\theta}{r^3} - \frac{Kp}{r^3}(3\cos^2\theta - 1) = \frac{Kp}{r^3}(3\cos^2\theta - (3\cos^2\theta - 1)) = \frac{Kp}{r^3}(3\cos^2\theta - 3\cos^2\theta + 1) = \frac{Kp}{r^3}.

So the magnitude of the external electric field is E0=Kpr3E_0 = \frac{Kp}{r^3}.

The magnitude of the net electric field at point A is Enet=3Kpcosθr3E_{net} = \frac{3Kp\cos\theta}{r^3}.