Solveeit Logo

Question

Question: Express the trigonometric ratios \(\sin A,\sec A,\tan A\) in terms of \(\cot A\). Write all the othe...

Express the trigonometric ratios sinA,secA,tanA\sin A,\sec A,\tan A in terms of cotA\cot A. Write all the other trigonometric ratios of A\angle A in terms of secA\sec A.

Explanation

Solution

We try to form the ratios in the form of sides of a right-angle triangle. Then we try to form the expressions of the sinA,secA,tanA\sin A,\sec A,\tan A in terms of cotA\cot A. We use different interconnecting trigonometric identities to find relations.

Complete step-by-step solution

We need to express trigonometric ratios sinA,secA,tanA\sin A,\sec A,\tan A in terms of cotA\cot A.
We try to express the ratios in the form of sides of a right-angle triangle. We have three sides of the triangle as height/normal, base, and hypotenuse. The hypotenuse is the longest side of the triangle.
We know that cotA=baseheight\cot A=\dfrac{base}{height}. We also have sinA=heighthypotenuse\sin A=\dfrac{height}{hypotenuse}, secA=hypotenusebase\sec A=\dfrac{hypotenuse}{base}, tanA=heightbase\tan A=\dfrac{height}{base}.
Now sinA=1cosecA\sin A=\dfrac{1}{\cos ecA}. We can express cosecA\operatorname{cosec}A as a function of cotA\cot A where cosecA=1+cot2A\operatorname{cose}cA=\sqrt{1+{{\cot }^{2}}A}.
So, sinA=1cosecA=11+cot2A\sin A=\dfrac{1}{\cos ecA}=\dfrac{1}{\sqrt{1+{{\cot }^{2}}A}}.
For the second case secA=1+tan2A\sec A=\sqrt{1+{{\tan }^{2}}A}. We can express tanA\tan A as a function of cotA\cot A where tanA=1cotA\tan A=\dfrac{1}{\cot A}.
So, secA=1+tan2A=1+(1cotA)2=cot2A+1cotA\sec A=\sqrt{1+{{\tan }^{2}}A}=\sqrt{1+{{\left( \dfrac{1}{\cot A} \right)}^{2}}}=\dfrac{\sqrt{{{\cot }^{2}}A+1}}{\cot A}.
For the final one tanA=1cotA\tan A=\dfrac{1}{\cot A}.
The remaining trigonometric ratios are cosA\cos A and cosecA\cos ecA. We need to express them in terms of secA\sec A.
We have cosA=basehypotenuse\cos A=\dfrac{base}{hypotenuse} and cosecA=hypotenuseheight\cos ecA=\dfrac{hypotenuse}{height}.
So, cosA=1secA\cos A=\dfrac{1}{\sec A} for the first relation.
For the second case cosecA=1sinA\cos ecA=\dfrac{1}{\sin A}. We can express sinA\sin A as a function of cosA\cos A where sinA=1cos2A\sin A=\sqrt{1-{{\cos }^{2}}A}. We also have cosA=1secA\cos A=\dfrac{1}{\sec A}. So, sinA=1cos2A=11sec2A\sin A=\sqrt{1-{{\cos }^{2}}A}=\sqrt{1-\dfrac{1}{{{\sec }^{2}}A}}.
Replacing values, we get cosecA=111sec2A=secAsec2A1\cos ecA=\dfrac{1}{\sqrt{1-\dfrac{1}{{{\sec }^{2}}A}}}=\dfrac{\sec A}{\sqrt{{{\sec }^{2}}A-1}}.

Note: All the trigonometric ratios are related to each other. We also could have used a variable to find the values of the ratios. We take the variable as cotA=x\cot A=x. We find the relations and put the variable in place of cotA\cot A.