Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A

Answer

We know that,
cosec2 A = 1 + cot2 A
1cosec2A=1(1+cot2A)\frac{1}{\text{cosec}^{2 }A} = \frac{1}{(1 + \text{cot}^2 A)}
sin2A=1(1+cot2A)\text{sin}^2 A = \frac{1}{(1 + \text{cot}^2 A)} ( As 1cosec2A=sin2A\text{As}\ \frac{1}{\text{cosec}^{2 }A} = \text{sin}^2 A)

sin A =±1(1+cot2A) ± \frac{1}{\sqrt{(1 + \text{cot}^2 A)}}

(1+cot2A)\sqrt{(1 + \text{cot}^2 A)} will always be positive as we are adding two positive quantities.

sin A = 1(1+cot2A)\frac{1}{\sqrt{(1 + \text{cot}^2 A)}}

We know that,
tan A = sin A cos A\frac{\text{sin A} }{\text{ cos A}}
However, we have,
cot A = cos Asin A\frac{\text{cos A}}{\text{sin A}}

Therefore, we have,
tan A =1cot A\frac{ 1}{\text{cot A}}

Also, sec2 A = 1 + tan2 A (Trigonometric Identity)
=1+1cot2A= 1 + \frac{1}{\text{cot}^2 A}

=(cot2A+1)cot2A= \frac{(\text{cot}^2 A + 1)} { \text{cot}^2 A}

sec A =(cot2A+1) cot A \frac{\sqrt{(\text{cot}^2 A + 1)} }{\text{ cot A}}