Solveeit Logo

Question

Question: Express the trigonometric ratios \(\sin A,\sec A\) and \(\tan A\) in terms of \(\cot A\). A. \( ...

Express the trigonometric ratios sinA,secA\sin A,\sec A and tanA\tan A in terms of cotA\cot A.
A. sinA=1cotA+1 secA=cot2A1cotA tanA=1cotA  \sin A = \dfrac{1}{{\sqrt {\cot A + 1} }} \\\ \sec A = \dfrac{{\sqrt {{{\cot }^2}A - 1} }}{{\cot A}} \\\ \tan A = \dfrac{1}{{\cot A}} \\\

B. sinA=1cot2A+1 secA=cot2A+1cotA tanA=1cotA  \sin A = \dfrac{1}{{\sqrt {{{\cot }^2}A + 1} }} \\\ \sec A = \dfrac{{\sqrt {{{\cot }^2}A + 1} }}{{\cot A}} \\\ \tan A = \dfrac{1}{{\cot A}} \\\

C. sinA=1cotA1 secA=cot2A+sinAcotA tanA=1cotA  \sin A = \dfrac{1}{{\sqrt {\cot A - 1} }} \\\ \sec A = \dfrac{{\sqrt {{{\cot }^2}A + \sin A} }}{{\cot A}} \\\ \tan A = \dfrac{1}{{\cot A}} \\\

D. None of these

Explanation

Solution

Hint:We will use simple properties like 1+cot2A=cosec2A1 + co{t^2}A = \cos e{c^2}A and 1+tan2A=sec2A1 + {\tan ^2}A = {\sec ^2}A in order to solve the question. Then we will also replace some values after simplifying these properties and turn the ratios of sinA,secA\sin A,\sec A and tanA\tan A into cotA\cot A one by one.

Complete step-by-step answer:
First, in case of tanA\tan A, we know that-
tanA=1cotA\Rightarrow \tan A = \dfrac{1}{{\cot A}}
So, this expresses the ratio of sinA\sin A in terms of cotA\cot A very easily.
Now, we will come to our next term i.e. sinA\sin A-
sinA=1cosecA.............(1)\to \sin A = \dfrac{1}{{\cos ecA}}.............(1)
The trigonometric ratio of sinA\sin A is not in terms of cotA\cot A already. So, we will make it in terms of cotA\cot A like this-
As we know that-
1+cot2A=cosec2A  cosec2A=1+cot2A  cosecA=±1+cot2A  \to 1 + {\cot ^2}A = \cos e{c^2}A \\\ \\\ \to \cos e{c^2}A = 1 + {\cot ^2}A \\\ \\\ \to \cos ecA = \pm \sqrt {1 + {{\cot }^2}A} \\\
Since A is an acute angle and cosecA\cos ecA is positive when A is acute. So,
cosecA=1+cot2A\to \cos ecA = \sqrt {1 + {{\cot }^2}A}
We will put that value of cosecA\cos ecA into equation (1)(1), we will get the ratio of sinAsinA in terms of cotA\cot A-
sinA=11+cot2A\Rightarrow \sin A = \dfrac{1}{{\sqrt {1 + {{\cot }^2}A} }}
The next term is secA\sec A, we know that-
1+tan2A=sec2A  sec2A=1+tan2A  secA=±(1+tan2A)  \to 1 + {\tan ^2}A = {\sec ^2}A \\\ \\\ \to {\sec ^2}A = 1 + {\tan ^2}A \\\ \\\ \to \sec A = \pm \sqrt {\left( {1 + {{\tan }^2}A} \right)} \\\
Here, A is acute and secA\sec A is positive when A is acute. So,
secA=(1+tan2A)\to \sec A = \sqrt {\left( {1 + {{\tan }^2}A} \right)}
secA=(1+1cot2A)\to \sec A = \sqrt {\left( {1 + \dfrac{1}{{{{\cot }^2}A}}} \right)} (as tanA=1cotA\tan A = \dfrac{1}{{\cot A}})
secA=(cot2A+1cot2A)  secA=cot2A+1cotA  \to \sec A = \sqrt {\left( {\dfrac{{{{\cot }^2}A + 1}}{{{{\cot }^2}A}}} \right)} \\\ \\\ \Rightarrow \sec A = \dfrac{{\sqrt {{{\cot }^2}A + 1} }}{{\cot A}} \\\
Hence, the ratio of secA\sec A in terms of cotA\cot A is secA=cot2A+1cotA\sec A = \dfrac{{\sqrt {{{\cot }^2}A + 1} }}{{\cot A}}.
Thus,
tanA=1cotA\Rightarrow \tan A = \dfrac{1}{{\cot A}}
sinA=11+cot2A\Rightarrow \sin A = \dfrac{1}{{\sqrt {1 + {{\cot }^2}A} }}
secA=cot2A+1cotA\Rightarrow \sec A = \dfrac{{\sqrt {{{\cot }^2}A + 1} }}{{\cot A}}
So, option B is the correct option.

Note: Students should remember trigonometric identities like 1+cot2A=cosec2A1 + co{t^2}A = \cos e{c^2}A and 1+tan2A=sec2A1 + {\tan ^2}A = {\sec ^2}A and trigonometric formulas for solving these types of questions.By some simple calculations and using trigonometric identities we can also write sinA,secA\sin A,\sec A and tanA\tan A in terms of tanA\tan A.