Question
Mathematics Question on Matrices
Express the following matrices as the sum of a symmetric and a skew-symmetric matrix:
(i)[3\15−1]
(ii)6 −2 2−23−12−13
(iii)3 −2 −43−2−5−112
(iv)1−152
(i)Let A=[3\15−1],then A′=[3\51−1]
NowA+A'=A=\begin{bmatrix}3&5\\\1&-1\end{bmatrix}+\begin{bmatrix}3&1\\\5&-1\end{bmatrix}$$=\begin{bmatrix}6&6\\\6&-2\end{bmatrix}
LetP=21(A+A′)=21[6\66−2]
=[3\33−1]
Now P′=[3\33−1]=P
Thus,P=21(A+A′)is a symmetric matrix.
Now A−A′=[3\15−1]−[3\51−1] =0−440
Let Q=21(A−A′)=210−440
=0−220
Now Q′=0−220=−Q
Thus Q=21(A−A′)is a skew-symmetric matrix.
Representing A as the sum of P and Q:
P+Q=[3\33−1]+0−220=[3\15−1]=A
(ii)Let A=6 −2 2−23−12−13then A′=6 −2 2−23−12−13
Now A+A′=6 −2 2−23−12−13+6 −2 2−23−12−13
=12 −4 4−46−24−26
let P=21(A+A′)=2112 −4 4−46−24−26
=6 −2 2−23−12−13
Now P′=6 −2 2−23−12−13=P
Thus P=21(A+A′) is a symmetric matrix.
Now A−A′=6 −2 2−23−12−13−6 −2 2−23−12−13
=0 0 0000000
LetQ=21(A−A′)=0 0 0000000
Now Q′==0 0 0000000=Q
ThusQ=21(A−A′) is a skew-symmetric matrix.
Representing A as the sum of P and Q:
P+Q=6 −2 2−23−12−13+0 0 0000000
=6 −2 2−23−12−13=A
(iii)Let A=3 −2 −43−2−5−112,then A′=3 3 −1−2−21−4−52
Now A+A′=3 −2 −43−2−5−112+3 3 −1−2−21−4−52
=6 1 −51−4−4−5−44
Let P=21(A+A′)=21=6 1 −51−4−4−5−44
=3 21 2−521−2−22−5−22
Now P′==3 21 2−521−2−22−5−22
thus P=21(A+A′) is a symmetric matrix.
Now A−A′=3 −2 −43−2−5−112−3 3 −1−2−21−4−52
=0 −5 −350−6360
Let Q=21(A−A′)=21=0 −5 −350−6360
=0 2−5 2−3250−32330
Now Q′=0 2−5 2−3250−32330=−Q
Thus,Q=21(A−A′)is a skew-symmetric matrix.
Representing A as the sum of P and Q:
P+Q=3 21 2−521−2−22−5−22+0 2−5 2−3250−32330
=3 −2 −43−2−5−112=A
(iv)Let A=1−152,Then A′=[1\5−12]
Now A+A′=A=1−152+[1\5−12]
=[2\444]
Let P=21(A+A′)=[1\222]
Now P′=[1\222]=P
Thus,P=21(A+A′) is a symmetric matrix.
Now A−A′=1−152−[1\5−12]
=0−660
Let Q=21(A−A′)=0−330
Now Q′=0−330=−Q
Thus,Q=21(A−A′) is a skew-symmetric matrix.
Representing A as the sum of P and Q:
P+Q=[1\222]+0−330
=1−152=A