Solveeit Logo

Question

Question: Express the following in the form A + iB . \(\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}\)...

Express the following in the form A + iB .
11cosθ+2isinθ\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}

Explanation

Solution

Start by rationalizing the term . Use trigonometric identities and conversion formulas to simplify the fraction. Separate the real and imaginary part after simplification , the result obtained will be in the form of A + iB.

Complete step-by-step answer:
Given,
11cosθ+2isinθ\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}
Let us start by rationalizing this equation, that is multiplying 1cosθ2isinθ1 - \cos \theta - 2i\sin \theta with the numerator and the denominator. We get
1×(1cosθ2isinθ)(1cosθ+2isinθ)×(1cosθ2isinθ)\dfrac{{1 \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}{{\left( {1 - \cos \theta + 2i\sin \theta } \right) \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}
As we know (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}, applying this formula in denominator , we get
=1cosθ2isinθ(1cosθ)2(2i)2(sin2θ)= \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{{{\left( {1 - \cos \theta } \right)}^2} - {{\left( {2i} \right)}^2}\left( {{{\sin }^2}\theta } \right)}}
We know i2=1&(ab)2=a2+b22ab{i^2} = - 1\& {\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, Applying this formula in denominator , we get
1cosθ2isinθ1+cos2θ2cosθ+4sin2θ\Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{1 + {{\cos }^2}\theta - 2\cos \theta + 4{{\sin }^2}\theta }}
We know that ,sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
1cosθ2isinθ22cosθ+3sin2θ\Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}
1cosθ2isinθ2(1cosθ)+3sin2θ\Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2(1 - \cos \theta ) + 3{{\sin }^2}\theta }}
We know, 1cosθ=2sin2θ21 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2} and sinθ=2sinθ2cosθ2\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
2sin2θ2i22sinθ2cosθ222sin2θ2+322sin2θ2cos2θ2\Rightarrow \dfrac{{2{{\sin }^2}\dfrac{\theta }{2} - i2 \cdot 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{2 \cdot 2{{\sin }^2}\dfrac{\theta }{2} + 3 \cdot {2^2}{{\sin }^2}\dfrac{\theta }{2}{{\cos }^2}\dfrac{\theta }{2}}}
Taking 4sin2θ24{\sin ^2}\dfrac{\theta }{2}in denominator and 4sinθ24\sin \dfrac{\theta }{2}in numerator as common , we get
4sinθ2(sinθ2icosθ2)4sin2θ2(1+3cos2θ2)\Rightarrow \dfrac{{4\sin \dfrac{\theta }{2}(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{4{{\sin }^2}\dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}
On simplification , we get
(sinθ2icosθ2)sinθ2(1+3cos2θ2)\Rightarrow \dfrac{{(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}
Now separating the real and imaginary part , we get
sinθ2sinθ2(1+3cos2θ2)icosθ2sinθ2(1+3cos2θ2)\dfrac{{\sin \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cos \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}
On further simplification ,we get
1(1+3cos2θ2)icotθ2(1+3cos2θ2)\dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}
So this is in the form of A + iB , where A=1(1+3cos2θ2) = \dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}and B=cotθ2(1+3cos2θ2) = - \dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}

Note: Similar questions can be solved by using the procedure , sometimes we just need to solve the exponent part first and sometimes we need to rationalize the terms. Students must know all the formulas related to trigonometric conversions. Attention must be given while substituting the values as it might lead to wrong answers.