Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Express the following expression in the form of a + ib.

(3+i5)(3i5)(3+2i)(3i2)\dfrac{(3+i√5)(3-i√5)}{(√3+√2i)-(√3-i√2)}

Answer

(3+i5)(3i5)(3+2i)(3i2)\dfrac{(3+i√5)(3-i√5)}{(√3+√2i)-(√3-i√2)}

=(32+(i5)2)3+2i3+i2=\dfrac{(3^2+(i√5)^2)}{√3+√2i-√3+i√2}

=95i2(22i)=\dfrac{9-5i^2}{(2√2i)}

=9+5(22i)×ii=\dfrac{9+5}{(2√2i)}×\dfrac{i}{i}

=14i22i2=\dfrac{14i}{2√2i^2}

=7i2=\dfrac{-7i}{√2}

=7i2×22=\dfrac{-7i}{√2}×\dfrac{√2}{√2}

=72i2=\dfrac{-7√2i}{2} (Ans)