Solveeit Logo

Question

Question: Express the following as a product: \(\cos 2x-\cos 4x.\)...

Express the following as a product: cos2xcos4x.\cos 2x-\cos 4x.

Explanation

Solution

We will use some known trigonometric identities to express the given difference as a product. We know the trigonometric identity cosCcosD=2sinC+D2sinDC2.\cos C-\cos D=2\sin \dfrac{C+D}{2}\sin \dfrac{D-C}{2}. We will use this identity to express the given expression as a product.

Complete step by step solution:
Let us consider the given trigonometric expression cos2xcos4x.\cos 2x-\cos 4x.
We need to write this expression as a product. So, for that we may use some familiar trigonometric identities.
We know the trigonometric identity given by cosCcosD=2sinC+D2sinDC2.\cos C-\cos D=2\sin \dfrac{C+D}{2}\sin \dfrac{D-C}{2}.
Let us compare the left-hand side of the identity with the given expression.
We will get C=2xC=2x and D=4x.D=4x.
When we apply these values, we will get the right-hand side of the above identity as 2sin2x+4x2sin4x2x2.2\sin \dfrac{2x+4x}{2}\sin \dfrac{4x-2x}{2}.
We can write this as 2sin6x2sin2x2.2\sin \dfrac{6x}{2}\sin \dfrac{2x}{2}.
Since 62\dfrac{6}{2} is 33 and 22\dfrac{2}{2} is 1,1, we will get 2sin3xsinx.2\sin 3x\sin x.
So, we will get cos2xcos4x=2sin3xsinx.\cos 2x-\cos 4x=2\sin 3x\sin x.
Hence, we can write the given expression which is a difference cos2xcos4x\cos 2x-\cos 4x as a product 2sin3xsinx.2\sin 3x\sin x.

Note: Let us derive the trigonometric identity we have used to solve the problem, cosCcosD=2sinC+D2sinDC2.\cos C-\cos D=2\sin \dfrac{C+D}{2}\sin \dfrac{D-C}{2}. Let us consider C=A+B2C=\dfrac{A+B}{2} and D=AB2.D=\dfrac{A-B}{2}. Now, we will use the addition and subtraction rules for Cosine function. We will get cosCcosD=cosA+B2cosAB2.\cos C-\cos D=\cos \dfrac{A+B}{2}-\cos \dfrac{A-B}{2}. We know that cos(x+y)=cosxcosysinxsiny.\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y. Similarly, we have cos(xy)=cosxcosy+sinxsiny.\cos \left( x-y \right)=\cos x\cos y+\sin x\sin y. Here we will take x=A2x=\dfrac{A}{2} and y=B2.y=\dfrac{B}{2}. From this, we will get cosCcosD=cosA2cosB2sinA2sinB2cosA2cosB2sinA2sinB2.\cos C-\cos D=\cos \dfrac{A}{2}\cos \dfrac{B}{2}-\sin \dfrac{A}{2}\sin \dfrac{B}{2}-\cos \dfrac{A}{2}\cos \dfrac{B}{2}-\sin \dfrac{A}{2}\sin \dfrac{B}{2}. We will cancel the similar terms with opposite signs. Then, we will get cosCcosD=sinA2sinB2sinA2sinB2.\cos C-\cos D=-\sin \dfrac{A}{2}\sin \dfrac{B}{2}-\sin \dfrac{A}{2}\sin \dfrac{B}{2}. When we add this, we will get cosCcosD=2sinA2sinB2.\cos C-\cos D=-2\sin \dfrac{A}{2}\sin \dfrac{B}{2}. And we know that C+D2=12(A+B2+AB2)=A2.\dfrac{C+D}{2}=\dfrac{1}{2}\left( \dfrac{A+B}{2}+\dfrac{A-B}{2} \right)=\dfrac{A}{2}. Similarly, we know that DC2=12(AB2A+B2)=B2.\dfrac{D-C}{2}=\dfrac{1}{2}\left( \dfrac{A-B}{2}-\dfrac{A+B}{2} \right)=-\dfrac{B}{2}. Now, we can write the identity as cosCcosD=2sinA2sin(B2).\cos C-\cos D=2\sin \dfrac{A}{2}\sin \left( -\dfrac{B}{2} \right). Therefore, we will get an important trigonometric identity as cosCcosD=2sinC+D2sinDC2.\cos C-\cos D=2\sin \dfrac{C+D}{2}\sin \dfrac{D-C}{2}. In this way, we can derive all the trigonometric identities using the known basic identities