Solveeit Logo

Question

Question: Express \({\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right), - \dfrac{\pi }{2} < x < \df...

Express tan1(cosx1sinx),π2<x<π2{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right), - \dfrac{\pi }{2} < x < \dfrac{\pi }{2} in the simplest form.

Explanation

Solution

To solve this question, we will use some basic trigonometric identities such as, cos2x=cos2xsin2x\cos 2x = {\cos ^2}x - {\sin ^2}x and sin2x=2sinxcosx\sin 2x = 2\sin x\cos x

Complete step-by-step answer :
We know that,
cos2x=cos2xsin2x\cos 2x = {\cos ^2}x - {\sin ^2}x
Replaces xx by x2\dfrac{x}{2},
cos2x2=cos2x2sin2x2\Rightarrow \cos 2\dfrac{x}{2} = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}
cosx=cos2x2sin2x2\Rightarrow \cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2} ……… (i)
Similarly, we know that
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
Replace xx by x2\dfrac{x}{2},
sin2x2=2sinx2cosx2\Rightarrow \sin 2\dfrac{x}{2} = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}
sinx=2sinx2cosx2\Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} ……… (ii)
We also know that,
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
Replace xx by x2\dfrac{x}{2},
sin2x2+cos2x2=1{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1 ………. (iii)
Now, we have
tan1(cosx1sinx){\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)
Putting the value of sin x, cos x and 1 from equation (i), (ii) and (iii), we will get
tan1(cos2x2sin2x2sin2x2+cos2x22sinx2cosx2)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} \right)
Using the identity (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, we can write sin2x2+cos2x22sinx2cosx2{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} as (cosx2sinx2)2{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)^2}
Therefore,
tan1(cos2x2sin2x2(cosx2sinx2)2)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)
Now, using the identity a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right), we can write cos2x2sin2x2{\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2} as (cosx2sinx2)(cosx2+sinx2)\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)
Thus,
tan1((cosx2sinx2)(cosx2+sinx2)(cosx2sinx2)2)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)
tan1((cosx2+sinx2)(cosx2sinx2))\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}} \right)
Now, dividing numerator and denominator both by cosx2\cos \dfrac{x}{2}, we will get
tan1((cosx2+sinx2)cosx2(cosx2sinx2)cosx2)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}} \right)
Solving this, we will get
tan1(1+tanx21tanx2)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right) …..(iv) tanx2=sinx2cosx2\therefore \tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}
As we know that,
tan(π4+x2)=1+tanx21tanx2\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) = \dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}} tan(x+y)=tanx+tany1tanxtany\therefore \tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}
Put this in equation (iv),
tan1(tan(π4+x2))\Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)
(π4+x2)\Rightarrow \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)
Hence, we can say that the simplest form of tan1(cosx1sinx){\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right) is (π4+x2)\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)

Note : For solving such questions, we need to remember the trigonometric properties as these questions can only be solved when we remember the properties and formula. This question can also get solved by putting cosx\cos x as sin(π2x)\sin \left( {\dfrac{\pi }{2} - x} \right) and sinx\sin x as cos(π2x)\cos \left( {\dfrac{\pi }{2} - x} \right) in the given trigonometric expression. Through this, we will get the answer.