Solveeit Logo

Question

Question: Express \(\int_a^b {{e^x}dx} \) as a limit of sum and evaluate it....

Express abexdx\int_a^b {{e^x}dx} as a limit of sum and evaluate it.

Explanation

Solution

We will first write the integral in the form of limit of sum as abf(x)dx=limh0h[f(a)+f(a+h)+.....+f(a+(n1)h)]\int_a^b {f\left( x \right)dx} = \mathop {\lim }\limits_{h \to 0} h\left[ {f\left( a \right) + f\left( {a + h} \right) + ..... + f\left( {a + \left( {n - 1} \right)h} \right)} \right], where h=banh = \dfrac{{b - a}}{n} and nn represents the number of term. Then, simplify the expression and apply the limits to get the required answer.

Complete step-by-step answer:
When we have to write a function as a limit of sum, the integral is written as
abf(x)dx=limh0h[f(a)+f(a+h)+.....+f(a+(n1)h)]\int_a^b {f\left( x \right)dx} = \mathop {\lim }\limits_{h \to 0} h\left[ {f\left( a \right) + f\left( {a + h} \right) + ..... + f\left( {a + \left( {n - 1} \right)h} \right)} \right], where h=banh = \dfrac{{b - a}}{n} and nn represents the number of term.
In the given expression,
f(x)=exf\left( x \right) = {e^x}
Then,
abexdx=limh0h[ea+ea+h+.....+ea+(n1)h]\int_a^b {{e^x}dx} = \mathop {\lim }\limits_{h \to 0} h\left[ {{e^a} + {e^{a + h}} + ..... + {e^{a + \left( {n - 1} \right)h}}} \right]
We can rewrite the expression as
abexdx=limh0h[ea+eaeh+.....+eae(n1)h]\int_a^b {{e^x}dx} = \mathop {\lim }\limits_{h \to 0} h\left[ {{e^a} + {e^a}{e^h} + ..... + {e^a}{e^{\left( {n - 1} \right)h}}} \right]
The expression inside the bracket represents G.P., where first term is ea{e^a} and the common ratio is eh{e^h} and there are nn terms.
Now, the sum of G.P. is given by A(Rn1)R1\dfrac{{A\left( {{R^n} - 1} \right)}}{{R - 1}}, where AA is the first term of the GP and RR is the common ration of G.P.
Therefore, the sum is ea(ehn1)eh1\dfrac{{{e^a}\left( {{e^{hn}} - 1} \right)}}{{{e^h} - 1}}
On substituting the value, we will get,
abexdx=limh0h[ea(ehn1)eh1]\int_a^b {{e^x}dx} = \mathop {\lim }\limits_{h \to 0} h\left[ {\dfrac{{{e^a}\left( {{e^{hn}} - 1} \right)}}{{{e^h} - 1}}} \right]
Which is also equivalent to limh0[ea(ehn1)eh1h]\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{{e^a}\left( {{e^{hn}} - 1} \right)}}{{\dfrac{{{e^h} - 1}}{h}}}} \right]
It is known that limx0(ex1x)=1\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - 1}}{x}} \right) = 1
Then, abexdx=limh0ea(ehn1)\int_a^b {{e^x}dx} = \mathop {\lim }\limits_{h \to 0} {e^a}\left( {{e^{hn}} - 1} \right)
Also, h=banh = \dfrac{{b - a}}{n}, which will give
abexdx=limh0ea(e(ban)n1) abexdx=limh0ea(eba1)  \int_a^b {{e^x}dx} = \mathop {\lim }\limits_{h \to 0} {e^a}\left( {{e^{\left( {\dfrac{{b - a}}{n}} \right)n}} - 1} \right) \\\ \Rightarrow \int_a^b {{e^x}dx} = \mathop {\lim }\limits_{h \to 0} {e^a}\left( {{e^{b - a}} - 1} \right) \\\
Now, apply the limit and open the bracket,
abexdx=eaebaea abexdx=ebea  \int_a^b {{e^x}dx} = {e^a}{e^{b - a}} - {e^a} \\\ \Rightarrow \int_a^b {{e^x}dx} = {e^b} - {e^a} \\\
Therefore, the value of abexdx\int_a^b {{e^x}dx} is ebea{e^b} - {e^a}

Note: We cannot apply the values of limit when the given expression will give indeterminate form. Also, the value of ee is greater than 1, hence, we have used the formula A(Rn1)R1\dfrac{{A\left( {{R^n} - 1} \right)}}{{R - 1}} for the sum of G.P. We have simplified the expression using the identity am+n=aman{a^{m + n}} = {a^m}{a^n}.